高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面配位金属-有机框架薄膜的制备及电催化应用

靳志斌 张健 谷志刚

靳志斌, 张健, 谷志刚. 表面配位金属-有机框架薄膜的制备及电催化应用[J]. 功能高分子学报, 2021, 34(3): 198-214. doi: 10.14133/j.cnki.1008-9357.20200718001
引用本文: 靳志斌, 张健, 谷志刚. 表面配位金属-有机框架薄膜的制备及电催化应用[J]. 功能高分子学报, 2021, 34(3): 198-214. doi: 10.14133/j.cnki.1008-9357.20200718001
JIN Zhibin, ZHANG Jian, GU Zhigang. Preparation and Electrocatalytic Applications of Surface-Coordinated Metal-Organic Framework Thin Films[J]. Journal of Functional Polymers, 2021, 34(3): 198-214. doi: 10.14133/j.cnki.1008-9357.20200718001
Citation: JIN Zhibin, ZHANG Jian, GU Zhigang. Preparation and Electrocatalytic Applications of Surface-Coordinated Metal-Organic Framework Thin Films[J]. Journal of Functional Polymers, 2021, 34(3): 198-214. doi: 10.14133/j.cnki.1008-9357.20200718001

表面配位金属-有机框架薄膜的制备及电催化应用

doi: 10.14133/j.cnki.1008-9357.20200718001
基金项目: 中国科学院青年创新促进会(2018339);国家自然科学基金(21872148,21601189);福建省自然科学基金(2016J01085)
详细信息
    作者简介:

    靳志斌(1998—),男,硕士生,主要研究方向为表面配位聚合物薄膜

    谷志刚,中国科学院福建物质结构研究所研究员,博士生导师。研究方向为金属有机聚合物薄膜在对映体识别分离、客体分子负载以及光学的应用。已主持国家自然科学基金(面上和青年项目)、中科院青年创新促进会基金、福建省基金、结构化学国家重点实验室课题。迄今为止,在国际权威杂志Chem Soc Rev, Coord Chem Rev, Angew Chem, J Am Chem Soc, Nano Lett ACS Nano, Nat Commun, Appl Catal B: Environ Small, J Mater Chem A, ACS Appl Mater Interfaces等发表论文50篇。入选福建省引进高层次人才(境外B类)、中科院青年创新促进会会员。目前担任中科院青促会化学与材料分会理事

    通讯作者:

    谷志刚,E-mail:zggu@fjirsm.ac.cn

  • 中图分类号: O641.4

Preparation and Electrocatalytic Applications of Surface-Coordinated Metal-Organic Framework Thin Films

  • 摘要: 设计和开发高效电催化剂对能源的存储和转化具有十分重要的意义。金属-有机框架(MOF)在基底表面通过液相外延层层配位组装的MOF薄膜(也被称作表面配位MOF薄膜,SURMOF)具有厚度可调节、生长取向可控以及表面均匀致密等优点,在电催化反应领域得到了广泛的研究和应用。本文总结了SURMOF及其衍生薄膜(SURMOF-D)的制备及其在电催化应用中的研究进展。由于SURMOF及其衍生薄膜具有结构多样性和功能可调节性,可在析氧反应、析氢反应、氧化还原反应、二氧化碳还原反应、超级电容器和串联电催化等过程中提供丰富的活性位点并加速电荷转移,使电催化性能更加高效。本文还讨论了SURMOF作为一类新型的薄膜催化剂在电催化应用中的研究挑战和存在的问题。

     

  • 图  1  SURMOF及其衍生薄膜的制备和电催化应用的示意图

    Figure  1.  Diagrammatic sketch for the preparation and the electrocatalytic applications of SURMOF and their derivative thin films

    图  2  SURMOF和SURMOF-D在电催化应用中的研究进展

    Figure  2.  Historical progress of SURMOF and SURMOF-D in electrocatalytic application

    图  3  SURMOF制备过程以及制备装置[91-94]

    Figure  3.  Schematic diagram of SURMOF preparation process and preparation device[91-94]

    a—Illustration of the LPE growth of SURMOF on a functionalized substrate surface;b—Schematic diagram of layer by layer dipping method(P0: Starting and final position for the sample holder, P1—P7: Containers for immersion solutions, 1: Teflon working table, 2: Container lid, 3: Gripper, 4: Sample holder, 5: Sample, 6: Position controller, 7: Ultrasonic bath, 8: Shower, 9: Parking position of container lid, 10: Pump and solution bottle for showering, 11: Computer);c—Schematic diagram of layer by layer pumping method;d—Schematic diagram of layer by layer spraying method;e—Schematic diagram of layer by layer flowing method

    图  4  (a)三维M2(BDC)2TED纳米片阵列薄膜在CF基底上的生长制备;(b)样品在CF基底上的LSV曲线;(c)具有不同液相外延周期的Co/Ni(BDC)2TED@CF的LSV曲线;(d)MOF@AuNMEs和AuNME控制的法拉第效率[82, 83]

    Figure  4.  (a)Preparation of the 3-D thin film of M2(BDC)2TED nanosheet arrays grown on CF; (b)LSV curves of samples on CF; (c)LSV curves for Co/Ni(BDC)2TED@CF with different LPE cycles; (d)Faradaic efficiencies of MOF@AuNMEs and AuNME control[82, 83]

    图  5  (a)采用层层喷涂法在功能化FTO基底上制备Re-SURMOF的过程;Re-SURMOF的(b)循环伏安曲线和(c)法拉第效率[102]

    Figure  5.  (a)Fabrication process of Re-SURMOF on functionalized FTO substrate in a LBL spray fashion; (b) CV and (c) Faradaic efficiency of Re-SURMOF[102]

    图  6  SURMOF-D样品制备的示意图:(a)通过碳化SURMOF将金属纳米催化剂与碳薄膜结合[124];(b)Cu-MOF HKUST-1外延纺织涂层衍生分级碳布的制备工艺[86];(c)由核-壳结构的SiO2@SURMOF纳米球碳化出的Cu-TiO2(Cu-TiO2/C)空心碳纳米球[125]

    Figure  6.  Schematic illustration of the preparation examples of SURMOF-D:(a)Metal-nanocatalyst incorporated carbon thin films by carbonizing SURMOF[124]; (b)The prepared process of hierarchical carbon cloth derived from Cu-MOF HKUST-1 epitaxial coating on textiles[86]; (c)Hollow carbon nanospheres with Cu-TiO2(Cu-TiO2/C) carbonized from core-shell structural SiO2@SURMOF nanospheres[125]

    图  7  (a)用于OER功能的CeO2@PIZA-1薄膜(衍生于羟基功能化FTO玻璃基底上,采用改良的LPE法制备的Ce(pdc)3负载PIZA-1薄膜)制备示意图;(b)N2氛围下PIZA-1粉末在不同温度下煅烧后得到的LSV极化曲线;(c)具有不同循环次数的PIZA-1-400/FTO极化曲线;(d)FTO,PIZA-1-400和CeO2@PIZA-1-400的极化曲线[127]

    Figure  7.  (a)Schematic illustration of the preparation of CeO2@PIZA-1 thin film derived from modified LPE fabrication process of the Ce(pdc)3 encapsulated PIZA-1 thin film on the OH-functionalized FTO glass substrate for OER performance; (b)LSV polarization curves of PIZA-1 powder after calcination at different temperatures under N2 atmosphere; (c)Polarization curves of PIZA-1-400/FTO with different cycles; (d)Polarization curves of bare FTO, PIZA-1-400 and CeO2@PIZA-1-400[127]

    图  8  (a)CoFe-PBA薄膜与(b)CoFe2O4薄膜的SEM图片;(c)(1)CoFe2O4薄膜、(2)RuO2、(3)CoFe2O4粉末、(4)CoFe-PBA薄膜、(5)扫描速率为2 mV/s泡沫镍-350的LSV曲线;(d)NiFe-BDC(X)SURMOF(X=NH2, H, OCH3)的制备及其向SURMOF-D(1-X)的转化;(e)SURMOF-D(1-X)的阳极极化曲线(支撑在铂微电极上,直径为25 µm,以5 mV/s的扫描速率记录在氧饱和的0.1 mol/L KOH溶液中,温度为25 ℃,所有的极化曲线都显示在没有红外降补偿的情况下);(f)1-NH2在各种转速下的极化曲线(支撑在Au盘电极上)[84, 128]

    Figure  8.  SEM images of (a)CoFe-PBA and (b)CoFe2O4 thin film; (c)LSV curves of (1)CoFe2O4 thin film, (2)RuO2, (3)CoFe2O4 powder, (4)CoFe-PBA thin film, and (5)Ni foam-350 with a scan rate of 2 mV/s; (d)Preparation of NiFe-BDC(X)SURMOF(X=NH2, H, OCH3) and transformation of NiFe-BDC(X)SURMOF to SURMOF-D(1-X); (e)Anodic polarization curves of SURMOF-D(1-X)(Supported on a Pt microelectrode, diameter is 25 µm, recorded in O2-saturated 0.1 mol/L KOH at a scan rate of 5 mV/s, Temperature is 25 ℃, All polarization curves are shown without IR drop compensation); (f)Polarization curves of 1-NH2(supported on an Au disc electrode) at various rotational speeds[84, 128]

    图  9  (a)MSZIF-T电催化剂的合成过程;(b)各种电催化剂在1600 r/min转速下的ORR极化曲线;MSZIF-900催化剂的(c)HER和(d)OER电化学性能[85]

    Figure  9.  (a)Illustration of the synthesis process for the MSZIF-T electrocatalysts; (b)ORR polarization curves for the various electrocatalysts at a rotation speed of 1600 r/min; (c)HER and (d)OER of electrochemical performance of the MSZIF-900 catalyst[85]

  • [1] ZHU W, CHEN Z, PAN Y, et al. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction [J]. Advanced Materials,2019,31(38):1800426.
    [2] ZHANG L H, SHI Y, WANG Y, et al. Nanocarbon catalysts: Recent understanding regarding the active sites [J]. Advanced Science,2020,7(5):1902126.
    [3] ZHANG L, WANG Y, NIU Z, et al. Single atoms on graphene for energy storage and conversion [J]. Small Methods,2019,3(9):1800443.
    [4] XU X, SAN H K, DUC A D, et al. Recent advances in hybrid sodium-air batteries [J]. Materials Horizons,2019,6(7):1306-1335. doi: 10.1039/C8MH01375F
    [5] TANG H, ZHENG M, HU Q, et al. Derivatives of coordination compounds for rechargeable batteries [J]. Journal of Materials Chemistry A,2018,6(29):13999-14024. doi: 10.1039/C8TA03644F
    [6] ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science,2011,332(6037):1537-1541. doi: 10.1126/science.1200770
    [7] PANDOLFO A G, HOLLENKAMP A F. Carbon properties and their role in supercapacitors [J]. Journal of Power Sources,2006,157(1):11-27. doi: 10.1016/j.jpowsour.2006.02.065
    [8] NAVEEN M H, GURUDATT N G, SHIM Y B. Applications of conducting polymer composites to electrochemical sensors: A review [J]. Applied Materials Today,2017,9:419-433. doi: 10.1016/j.apmt.2017.09.001
    [9] BANDODKAR A J, LÓPEZ C S, VINU M A M, et al. All-printed magnetically self-healing electrochemical devices [J]. Science Advances,2016,2(11):e1601465. doi: 10.1126/sciadv.1601465
    [10] JIANG Z Q, LI Y F, ZHU X J, et al. Ni(II)-based coordination polymers for efficient electrocatalytic oxygen evolution reaction [J]. Rsc Advances,2018,8(67):38562-38565. doi: 10.1039/C8RA07492E
    [11] KUMAR A, BHATTACHARYYA S. Porous NiFe-oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting [J]. Acs Applied Materials & Interfaces,2017,9(48):41906-41915.
    [12] SHARIFI T, GRACIA-ESPINO E, CHEN A, et al. Oxygen reduction reactions on single- or few-atom discrete active sites for heterogeneous catalysis [J]. Advanced Energy Materials,2020,10:1902084.
    [13] BAI X F, CHEN W, WANG B Y, et al. Recent progress on electrochemical reduction of carbon dioxide [J]. Acta Physico-Chimica Sinica,2017,33(12):2388-2403.
    [14] HOU J, YANG M, ZHANG J. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions [J]. Nanoscale,2020,12(13):6900-6920.
    [15] TANG J, CHEN D, YAO Q, et al. Recent advances in noble metal-based nanocomposites for electrochemical reactions [J]. Materials Today Energy,2017,6:115-127. doi: 10.1016/j.mtener.2017.09.005
    [16] LIU J, MA Q, HUANG Z, et al. Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications [J]. Advanced Materials,2019,31(9):1800696. doi: 10.1002/adma.201800696
    [17] SHI Q, ZHU C, DU D, et al. Robust noble metal-based electrocatalysts for oxygen evolution reaction [J]. Chemical Society Reviews,2019,48(12):3181-3192. doi: 10.1039/C8CS00671G
    [18] RAHMAN G, CHAE S Y, OH-SHIM J. Efficient hydrogen evolution performance of phase-pure NiS electrocatalysts grown on fluorine-doped tin oxide-coated glass by facile chemical bath deposition [J]. International Journal of Hydrogen Energy,2018,43(29):13022-13031. doi: 10.1016/j.ijhydene.2018.05.049
    [19] XIE J, XIE Y. Transition metal nitrides for electrocatalytic energy conversion: Opportunities and challenges [J]. Chemistry: A European Journal,2016,22(11):3588-3598. doi: 10.1002/chem.201501120
    [20] ZHANG X, SHAO J, HUANG W, et al. Three dimensional carbon substrate materials for electrolysis of water [J]. Science China-Materials,2018,61(9):1143-1153. doi: 10.1007/s40843-018-9295-8
    [21] LIU D, TAO L, YAN D, et al. Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction [J]. Chemelectrochem,2018,5(14):1775-1785. doi: 10.1002/celc.201800086
    [22] WU J X, HE C T, LI G R, et al. An inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu―C hybrid nanorod arrays for an efficient oxygen evolution reaction [J]. Journal of Materials Chemistry A,2018,6(39):19176-19181. doi: 10.1039/C8TA06069J
    [23] MENG N, LIU C, LIU Y, et al. Efficient electrosynthesis of syngas with tunable CO/H2 ratios over Zn xCd1− xS-amine inorganic-organic hybrids [J]. Angewandte Chemie International Edition,2019,58(52):18908-18912. doi: 10.1002/anie.201913003
    [24] SU J, GE R, DONG Y, et al. Recent progress in single-atom electrocatalysts: Concept, synthesis, and applications in clean energy conversion [J]. Journal of Materials Chemistry A,2018,6(29):14025-14042. doi: 10.1039/C8TA04064H
    [25] QIAN Y, KHAN I A, ZHAO D. Electrocatalysts derived from metal-organic frameworks for oxygen reduction and evolution reactions in aqueous media [J]. Small,2017,13(37):1701143.
    [26] YANG Y, MA Y, LI P, et al. Research progress in non-precious metal electrocatalyst for oxygen reduction reaction [J]. Battery Bimonthly,2018,48(1):56-59.
    [27] KITAGAWA S, KITAURA R, NORO S I. Functional porous coordination polymers [J]. Angewandte Chemie International Edition,2004,43(18):2334-2375. doi: 10.1002/anie.200300610
    [28] HORIKE S, UMEYAMA D, KITAGAWA S. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks [J]. Accounts of Chemical Research,2013,46(11):2376-2384. doi: 10.1021/ar300291s
    [29] KANG X M, SHI Y, CAO C S, et al. Stable metal-organic frameworks with high catalytic performance in the cycloaddition of CO2 with aziridines [J]. Science China Chemistry,2019,62(5):622-628. doi: 10.1007/s11426-018-9420-6
    [30] HE Y C, YANG J, KAN W Q, et al. A new microporous anionic metal-organic framework as a platform for highly selective adsorption and separation of organic dyes [J]. Journal of Materials Chemistry A,2015,3(4):1675-1681. doi: 10.1039/C4TA05391E
    [31] WANG W, XU X, ZHOU W, et al. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting [J]. Advanced Science,2017,4(4):1600371.
    [32] MINGABUDINOVA L R, VINOGRADOV V V, MILICHKO V A, et al. , Metal-organic frameworks as competitive materials for non-linear optics [J]. Chemical Society Reviews,2016,45(19):5408-5431. doi: 10.1039/C6CS00395H
    [33] WANG C, ZHANG T, LIN W. Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics [J]. Chemical Reviews,2012,112(2):1084-1104. doi: 10.1021/cr200252n
    [34] KURMOO M. Magnetic metal-organic frameworks [J]. Chemical Society Reviews,2009,38(5):1353-1379. doi: 10.1039/b804757j
    [35] TAYLOR K M L, RIETER W J, LIN W. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging [J]. Journal of the American Chemical Society,2008,130(44):14358-14359. doi: 10.1021/ja803777x
    [36] STASSEN I, BURTCH N, TALIN A, et al. An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors [J]. Chemical Society Reviews,2017,46(11):3185-3241. doi: 10.1039/C7CS00122C
    [37] KEMPAHANUMAKKAGARI S, VELLINGIRI K, DEEP A, et al. Metal-organic framework composites as electrocatalysts for electrochemical sensing applications [J]. Coordination Chemistry Reviews,2018,357:105-129. doi: 10.1016/j.ccr.2017.11.028
    [38] OKADA K, SAWAI S, IKIGAKI K, et al. Electrochemical sensing and catalysis using Cu-3(BTC)(2) coating electrodes from Cu(OH)(2) films [J]. Crystengcomm,2017,19(29):4194-4200. doi: 10.1039/C7CE00416H
    [39] DELLA R J, LIU D, LIN W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery [J]. Accounts of Chemical Research,2011,44(10):957-968. doi: 10.1021/ar200028a
    [40] WANG X, HUANG X, GAO W, et al. Metal-organic framework derived CoTe2 encapsulated in nitrogen-doped carbon nanotube frameworks: A high-efficiency bifunctional electrocatalyst for overall water splitting [J]. Journal of Materials Chemistry A,2018,6(8):3684-3691. doi: 10.1039/C7TA10728E
    [41] PENG W, ZHENG G, WANG Y, et al. Zn doped ZIF67-derived porous carbon framework as efficient bifunctional electrocatalyst for water splitting [J]. International Journal of Hydrogen Energy,2019,44(36):19782-19791. doi: 10.1016/j.ijhydene.2019.05.101
    [42] LI Y, FU Y, LIU W, et al. Hollow Co-Co3O4@CNTs derived from ZIF-67 for lithium ion batteries [J]. Journal of Alloys and Compounds,2019,784:439-446. doi: 10.1016/j.jallcom.2019.01.085
    [43] SHI W, XU X, ZHANG L, et al. Metal-organic framework-derived structures for next-generation rechargeable batteries [J]. Functional Materials Letters,2018,11(6):1830006.
    [44] CHOI K M, JEONG H M, PARK J H, et al. Supercapacitors of nanocrystalline metal-organic frameworks [J]. ACS Nano,2014,8(7):7451-7457. doi: 10.1021/nn5027092
    [45] SHEBERLA D, BACHMAN J C, ELIAS J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance [J]. Nat Mater,2017,16(2):220-224. doi: 10.1038/nmat4766
    [46] SHAO P, YI L, CHEN S, et al. Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers [J]. Journal of Energy Chemistry,2020,40:156-170. doi: 10.1016/j.jechem.2019.04.013
    [47] ROSEN B A, HOD I. Tunable molecular-scale materials for catalyzing the low-overpotential electrochemical conversion of CO2 [J]. Advanced Materials,2018,30(41):1706238.
    [48] ZHAO P, NIE H, YU J, et al. A facile synthesis of porous N-doped carbon with hybridization of Fe3C nanoparticle-encased CNTs for an advanced oxygen reduction reaction electrocatalyst [J]. Inorganic Chemistry Frontiers,2018,5(10):2546-2553. doi: 10.1039/C8QI00681D
    [49] YU X Y, FENG Y, GUAN B, et al. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction [J]. Energy & Environmental Science,2016,9(4):1246-1250.
    [50] LIU X, YUE T, QI K, et al. Metal-organic framework membranes: From synthesis to electrocatalytic applications [J]. Chinese Chemical Letters,2019,31(9):2189-2201.
    [51] OTAKE K I, CUI Y, BURU C T, et al. Single-atom-based vanadium oxide catalysts supported on metal-organic frameworks: Selective alcohol oxidation and structure-activity relationship [J]. Journal of the American Chemical Society,2018,140(28):8652-8656. doi: 10.1021/jacs.8b05107
    [52] CHEN Z, QING H, ZHOU K, et al. Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction [J]. Progress in Materials Science,2020,108:100618.
    [53] ZHAO P, HUA X, XU W, et al. Metal-organic framework-derived hybrid of Fe3C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highly efficient oxygen reduction and water oxidation [J]. Catalysis Science & Technology,2016,6(16):6365-6371.
    [54] WU H B, LOU X W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges [J]. Science Advances,2017,3(12):eaap9252. doi: 10.1126/sciadv.aap9252
    [55] LIU X, DONG J, YOU B, et al. Competent overall water-splitting electrocatalysts derived from ZIF-67 grown on carbon cloth [J]. Rsc Advances,2016,6(77):73336-73342. doi: 10.1039/C6RA17030G
    [56] WANG Q C, WANG J, LEI Y P, et al. Research progress on carbon nanotubes in noble-metal-free electrocatalytic oxygen reduction reaction [J]. Chinese Journal of Inorganic Chemistry,2018,34(5):807-822.
    [57] HUANG G, YIN D M, WANG L M. A general strategy for coating metal-organic frameworks on diverse components and architectures [J]. Journal of Materials Chemistry A,2016,4(39):15106-15116. doi: 10.1039/C6TA05389K
    [58] LI J H, WANG Y S, CHEN Y C, et al. Metal-organic frameworks toward electrocatalytic applications [J]. Applied Sciences,2019,9(12):2427.
    [59] WANG L, WU Y, CAO R, et al. Fe/Ni Metal-organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential [J]. ACS Applied Materials & Interfaces,2016,8(26):16736-16743.
    [60] ZACHER D, SHEKHAH O, WÖLL C, et al. Thin films of metal-organic frameworks [J]. Chemical Society Reviews,2009,38(5):1418-1429. doi: 10.1039/b805038b
    [61] DUAN J, CHEN S, ZHAO C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting [J]. Nature Communications,2017,8(1):15341. doi: 10.1038/ncomms15341
    [62] LIN S, PINEDA-GALVAN Y, MAZA W A, et al. Electrochemical water oxidation by a catalyst-modified metal-organic framework thin film [J]. Chemsuschem,2017,10(3):514-522. doi: 10.1002/cssc.201601181
    [63] HOD I, BURY W, GARDNER D M, et al. Bias-switchable permselectivity and redox catalytic activity of a ferrocene-functionalized, thin-film metal-organic framework compound [J]. Journal of Physical Chemistry Letters,2015,6(4):586-591. doi: 10.1021/acs.jpclett.5b00019
    [64] RONG J, QIU F, ZHANG T, et al. Self-directed hierarchical Cu3(PO4)2/Cu-BDC nanosheets array based on copper foam as an efficient and durable electrocatalyst for overall water splitting [J]. Electrochimica Acta,2019,313:179-188. doi: 10.1016/j.electacta.2019.05.030
    [65] AHRENHOLTZ S R, EPLEY C C, MORRIS A J. Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism [J]. J Am Chem Soc,2014,136(6):2464-2472. doi: 10.1021/ja410684q
    [66] BAI X J, LI Y N, YANG X M, et al. Preparation of hierarchical trimetallic coordination polymer film as efficient electrocatalyst for oxygen evolution reaction [J]. Chem Commun,2019,55(63):9343-9346. doi: 10.1039/C9CC04893F
    [67] WANNAPAIBOON S, TU M, SUMIDA K, et al. Hierarchical structuring of metal-organic framework thin-films on quartz crystal microbalance (QCM) substrates for selective adsorption applications [J]. Journal of Materials Chemistry A,2015,3(46):23385-23394. doi: 10.1039/C5TA05620A
    [68] CHENG Y, WANG X, JIA C, et al. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation [J]. Journal of Membrane Science,2017,539:213-223. doi: 10.1016/j.memsci.2017.06.011
    [69] CAMPAGNOL N, van ASSCHE T R C, LI M, et al. On the electrochemical deposition of metal-organic frameworks [J]. Journal of Materials Chemistry A,2016,4(10):3914-3925. doi: 10.1039/C5TA10782B
    [70] WORRALL S D, MANN H, ROGERS A, et al. Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes [J]. Electrochimica Acta,2016,197:228-240. doi: 10.1016/j.electacta.2016.02.145
    [71] ZHUANG J L, TERFORT A, WÖLL C. Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy: A review [J]. Coordination Chemistry Reviews,2016,307:391-424. doi: 10.1016/j.ccr.2015.09.013
    [72] HERMES S, SCHRÖDER F, CHELMOWSKI R, et al. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111) [J]. Journal of the American Chemical Society,2005,127(40):13744-13745. doi: 10.1021/ja053523l
    [73] XING J, GUO K, ZOU Z, et al. In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe2+ induction as an efficient and stable electrocatalyst for water oxidation [J]. Chem Commun,2018,54(51):7046-7049. doi: 10.1039/C8CC03112F
    [74] VIRMANI E, ROTTER J M, MÄHRINGER A, et al. On-surface synthesis of highly oriented thin metal-organic framework films through vapor-assisted Conversion [J]. Journal of the American Chemical Society,2018,140(14):4812-4819. doi: 10.1021/jacs.7b08174
    [75] CHEN Y F, LI S Q, PEI X K, et al. A solvent-free hot-pressing method for preparing metal-organic-framework coatings [J]. Angewandte Chemie: International Edition,2016,55(10):3419-3423. doi: 10.1002/anie.201511063
    [76] LIU Y, BAN Y, YANG W. Microstructural engineering and architectural design of metal-organic framework membranes [J]. Advanced Materials,2017,29(31):1606949.
    [77] BRADSHAW D, GARAI A, HUO J. Metal-organic framework growth at functional interfaces: Thin films and composites for diverse applications [J]. Chem Soc Rev,2012,41(6):2344-2381. doi: 10.1039/C1CS15276A
    [78] SO M C, JIN S, SON H J, et al. Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal-organic frameworks [J]. Journal of the American Chemical Society,2013,135(42):15698-15701. doi: 10.1021/ja4078705
    [79] GU Z G, ZHANG J. Epitaxial growth and applications of oriented metal-organic framework thin films [J]. Coordination Chemistry Reviews,2019,378:513-532. doi: 10.1016/j.ccr.2017.09.028
    [80] BETARD A, FISCHER R A. Metal-organic framework thin films: From fundamentals to applications [J]. Chem Rev,2012,112(2):1055-1083. doi: 10.1021/cr200167v
    [81] SHEKHAH O, WANG H, KOWARIK S, et al. Step-by-step route for the synthesis of metal-organic frameworks [J]. Journal of the American Chemical Society,2007,129(49):15118-15119. doi: 10.1021/ja076210u
    [82] LI D J, LI Q H, GU Z G, et al. A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction [J]. Journal of Materials Chemistry A,2019,7(31):18519-18528. doi: 10.1039/C9TA04554F
    [83] de LUNA P, LIANG W, MALLICK A, et al. Metal-organic framework thin films on high-curvature nanostructures toward tandem electrocatalysis [J]. Acs Applied Materials & Interfaces,2018,10(37):31225-31232.
    [84] LI W, XUE S, WATZELE S, et al. Advanced bifunctional oxygen reduction and evolution electrocatalyst derived from surface-mounted metal-organic frameworks [J]. Angewandte Chemie: International Edition,2020,59(4):5837-5843.
    [85] JIA G, ZHANG W, FAN G, et al. Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis [J]. Angewandte Chemie: International Edition,2017,56(44):13781-13785. doi: 10.1002/anie.201708385
    [86] LI D J, LEI S, WANG Y Y, et al. Helical carbon tubes derived from epitaxial Cu-MOF coating on textile for enhanced supercapacitor performance [J]. Dalton Trans,2018,47(16):5558-5563. doi: 10.1039/C8DT00761F
    [87] MANDEMAKER L D B, RIVERA-TORRENTE M, DELEN G, et al. Nanoweb surface-mounted metal-organic framework films with tunable amounts of acid sites as tailored catalysts [J]. Chemistry: A European Journal,2019,26(3):691-698.
    [88] OU J, XIANG J, LIU J, et al. Surface-supported metal-organic framework thin-film-derived transparent CoS1.097@N-doped carbon film as an efficient counter electrode for bifacial dye-sensitized solar cells [J]. ACS Appl Mater Interfaces,2019,11(16):14862-14870. doi: 10.1021/acsami.8b21626
    [89] GU Z G, PFRIEM A, HAMSCH S, et al. Transparent films of metal-organic frameworks for optical applications [J]. Microporous and Mesoporous Materials,2015,211:82-87. doi: 10.1016/j.micromeso.2015.02.048
    [90] BOWSER B H, BROWER L J, OHNSORG M L, et al. Comparison of surface-bound and free-standing variations of HKUST-1 MOFs: Effect of activation and ammonia exposure on morphology, crystallinity, and composition [J]. Nanomaterials (Basel),2018,8(9):650.
    [91] GU Z G, BURCK J, BIHLMEIER A, et al. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds [J]. Chemistry: A European Journal,2014,20(32):9879-9882. doi: 10.1002/chem.201403524
    [92] ARSLAN H K, SHEKHAH O, WIELAND D C F, et al. Intercalation in layered metal−organic frameworks: Reversible inclusion of an extended π-system [J]. J Am Chem Soc,2011,133(21):8158-8161. doi: 10.1021/ja2037996
    [93] ARSLAN H K, SHEKHAH O, WOHLGEMUTH J, et al. High-throughput fabrication of uniform and homogenous MOF coatings [J]. Adv Funct Mater,2011,21(22):4228-4231. doi: 10.1002/adfm.201101592
    [94] GU Z G, FU W Q, WU X, et al. Liquid-phase epitaxial growth of a homochiral MOF thin film on poly(L-DOPA) functionalized substrate for improved enantiomer separation [J]. Chem Commun,2016,52(4):772-775. doi: 10.1039/C5CC07614E
    [95] LI Q, GIES J, YU X J, et al. Concentration-dependent seeding as a strategy for fabrication of densely packed SURMOF layers [J]. Chemistry: A European Journal,2020,26:5185-5189.
    [96] WANG Z, HENKE S, PAULUS M, et al. Defect creation in surface-mounted metal-organic framework thin films [J]. ACS Appl Mater Interfaces,2020,12(2):2655-2661. doi: 10.1021/acsami.9b18672
    [97] AHMAD S, LIU J, GONG C, et al. Photon up-conversion via epitaxial surface-supported metal-organic framework thin films with enhanced photocurrent [J]. ACS Applied Energy Materials,2018,1(2):249-253. doi: 10.1021/acsaem.7b00023
    [98] BEGUM S, HASSAN Z, BRÄSE S, et al. Metal-organic framework-templated biomaterials: Recent progress in synthesis, functionalization, and applications [J]. Accounts of Chemical Research,2019,52(6):1598-1610. doi: 10.1021/acs.accounts.9b00039
    [99] LI D J, GU Z G, VOHRA I, et al. Epitaxial growth of oriented metalloporphyrin network thin film for improved selectivity of volatile organic compounds [J]. Small,2017,13(17):1604035.
    [100] GU Z G, FU H, NEUMANN T, et al. Chiral porous metacrystals: Employing liquid-phase epitaxy to assemble enantiopure metal-organic nanoclusters into molecular framework pores [J]. ACS Nano,2016,10(1):977-983. doi: 10.1021/acsnano.5b06230
    [101] YE L, LIU J, GAO Y, et al. Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency [J]. Journal of Materials Chemistry A,2016,4(40):15320-15326. doi: 10.1039/C6TA04801C
    [102] HEINKE L, WOLL C. Surface-mounted metal-organic frameworks: Crystalline and porous molecular assemblies for fundamental insights and advanced applications [J]. Adv Mater,2019,31(26):1806324. doi: 10.1002/adma.201806324
    [103] CHEN Z, GU Z G, FU W Q, et al. A confined fabrication of perovskite quantum dots in oriented MOF thin film [J]. Acs Applied Materials & Interfaces,2016,8(42):28737-28742.
    [104] VOHRA M I, LI D J, GU Z G, et al. Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis [J]. Nanoscale,2017,9(23):7734-7738. doi: 10.1039/C7NR02284K
    [105] FU W Q, LIU M, GU Z G, et al. Liquid phase epitaxial growth and optical properties of photochromic guest-encapsulated MOF thin film [J]. Crystal Growth & Design,2016,16(9):5487-5492.
    [106] GUO W, LIU J, WEIDLER P G, et al. Loading of ionic compounds into metal-organic frameworks: A joint theoretical and experimental study for the case of La3+ [J]. Physical Chemistry Chemical Physics,2014,16(33):17918-17923. doi: 10.1039/C4CP02285H
    [107] LI D J, GU Z G, ZHANG J. Auto-controlled fabrication of a metal-porphyrin framework thin film with tunable optical limiting effects [J]. Chemical Science,2020,11(7):1935-1942. doi: 10.1039/C9SC05881H
    [108] GU Z G, LI D J, ZHENG C, et al. MOF-Templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications [J]. Angew Chem Int Ed Engl,2017,56(24):6853-6858. doi: 10.1002/anie.201702162
    [109] LIU X, KOZLOWSKA M, OKKALI T, et al. Photoconductivity in metal-organic framework (MOF) thin films [J]. Angewandte Chemie International Edition,2019,58(28):9590-9595. doi: 10.1002/anie.201904475
    [110] WANG Z, LIU J, LUKOSE B, et al. Nanoporous designer solids with huge lattice constant gradients: Multiheteroepitaxy of metal-organic frameworks [J]. Nano Lett,2014,14(3):1526-1529. doi: 10.1021/nl404767k
    [111] IKIGAKI K, OKADA K, TOKUDOME Y, et al. MOF-on-MOF: Oriented growth of multiple layered thin films of metal-organic frameworks [J]. Angew Chem Int Ed Engl,2019,58(21):6886-6890. doi: 10.1002/anie.201901707
    [112] LIU B, TU M, ZACHER D, et al. Multi variant surface mounted metal-organic frameworks [J]. Advanced Functional Materials,2013,23(30):3790-3798. doi: 10.1002/adfm.201202996
    [113] LIU J, HOU S, LI W, et al. , Recent approaches to design electrocatalysts based on metal-organic frameworks and their derivatives [J]. Chem Asian J,2019,14(20):3474-3501. doi: 10.1002/asia.201900748
    [114] DRAGÄSSER A, SHEKHAH O, ZYBAYLO O, et al. Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy [J]. Chem Commun,2012,48(5):663-665. doi: 10.1039/C1CC16580A
    [115] LIU J, PARADINAS M, HEINKE L, et al. Film quality and electronic properties of a surface-anchored metal-organic framework revealed by using a multi-technique approach [J]. ChemElectroChem,2016,3(5):713-718. doi: 10.1002/celc.201500486
    [116] MUGNAINI V, TSOTSALAS M, BEBENSEE F, et al. Electrochemical investigation of covalently post-synthetic modified SURGEL coatings [J]. Chem Commun,2014,50(76):11129-11131. doi: 10.1039/C4CC03521F
    [117] ZHANG K, GUO W, LIANG Z, et al. Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction [J]. Science China Chemistry,2019,62(4):417-429. doi: 10.1007/s11426-018-9441-4
    [118] MIRZA S, CHEN H, CHEN S M, et al. Insight into Fe(Salen) encapsulated Co-porphyrin framework derived thin film for efficient oxygen evolution reaction [J]. Crystal Growth & Design,2018,18(11):7150-7157.
    [119] BEGUM S, HASHEM T, TSOTSALAS M, et al. Electrolytic conversion of sacrificial metal-organic framework thin films into an electrocatalytically active monolithic oxide coating for the oxygen-evolution reaction [J]. Energy Technology,2019,7(11):1900967. doi: 10.1002/ente.201900967
    [120] LI X, YANG X, XUE H, et al. Metal-organic frameworks as a platform for clean energy applications [J]. EnergyChem,2020,2(2):100027. doi: 10.1016/j.enchem.2020.100027
    [121] XIA Y, YANG Z, ZHU Y. Porous carbon-based materials for hydrogen storage: Advancement and challenges [J]. Journal of Materials Chemistry A,2013,1(33):9365-9381. doi: 10.1039/c3ta10583k
    [122] COMPTON O C, NGUYEN S T. Graphene oxide highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials [J]. Small,2010,6(6):711-723. doi: 10.1002/smll.200901934
    [123] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews,2009,38(9):2520-2531. doi: 10.1039/b813846j
    [124] GU Z G, ZHANG D X, FU W Q, et al. Facile synthesis of metal-loaded porous carbon thin films via carbonization of surface-mounted metal-organic frameworks [J]. Inorg Chem,2017,56(6):3526-3531. doi: 10.1021/acs.inorgchem.6b03140
    [125] CHEN H, GU Z G, MIRZA S, et al. Hollow Cu-TiO2/C nanospheres derived from a Ti precursor encapsulated MOF coating for efficient photocatalytic hydrogen evolution [J]. Journal of Materials Chemistry A,2018,6(16):7175-7181. doi: 10.1039/C8TA01034J
    [126] ZHOU W, HUANG D D, WU Y P, et al. Stable hierarchical bimetal-organic nanostructures as high performance electrocatalysts for the oxygen evolution reaction [J]. Angewandte Chemie: International Edition,2019,58(13):4227-4231. doi: 10.1002/anie.201813634
    [127] LI D J, GU Z G, ZHANG W, et al. Epitaxial encapsulation of homodispersed CeO2 in a cobalt-porphyrin network derived thin film for the highly efficient oxygen evolution reaction [J]. Journal of Materials Chemistry A,2017,5(38):20126-20130. doi: 10.1039/C7TA06580A
    [128] LEI S, LI Q H, KANG Y, et al. Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction [J]. Applied Catalysis B: Environmental,2019,245:1-9. doi: 10.1016/j.apcatb.2018.12.036
    [129] ZHU B, XIA D, ZOU R. Metal-organic frameworks and their derivatives as bifunctional electrocatalysts [J]. Coordination Chemistry Reviews,2018,376:430-448. doi: 10.1016/j.ccr.2018.07.020
    [130] JIAO Y, ZHENG Y, JARONIEC M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions [J]. Chemical Society Reviews,2015,44(8):2060-2086. doi: 10.1039/C4CS00470A
    [131] XIA B Y, YAN Y, LI N, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst [J]. Nature Energy,2016,1(1):15006. doi: 10.1038/nenergy.2015.6
    [132] HU C, DAI L. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution [J]. Advanced Materials,2017,29(9):1604942. doi: 10.1002/adma.201604942
    [133] JIANG H, GU J, ZHENG X, et al. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER [J]. Energy & Environmental Science,2019,12(1):322-333.
  • 加载中
图(9)
计量
  • 文章访问数:  917
  • HTML全文浏览量:  553
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-18
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回