-
手性(Chirality)是指一种物质的实体与其镜像不能完全重合的现象,例如人的左手与右手,它们互为镜像却不能完全重合。手性物质在自然界中普遍存在,是生命的物质基础。构成生命体的基础物质(蛋白质、DNA、RNA和氨基酸)、螺旋盘绕状生长的藤蔓植物、有螺旋形花纹的海螺以及星系的漩涡现象等都与手性有着不可分割的联系。手性研究对探究生命的起源和发展具有重要的科学意义[1-4]。1815年,法国的生理学家Biot发现,当一束偏振光通过某种属性的有机成分时,如果这种物质使光的振动方向发生向左或右的偏转,则认为这种物质具有光学活性(Optical activity)[5]。具有手性的分子或组装体,也具有旋光性。1860年,Pasteur教授对酒石酸的研究掀起了手性研究的热潮。1893年,英国科学家Kelvin首次将手性定义为“物体与它的平面镜的镜像不能完全重合”。此后,科学家们逐渐认识了手性的本质,并发现手性在光电材料、手性拆分、对映体传感器和不对称催化反应中具有广泛的应用[6-11]。
手性聚合物的不对称结构使其具有优异的光学特性,这些特性使其在光学器件的应用方面受到广泛的关注。目前,获得手性聚合物的方法有手性单体的聚合[12]、非手性单体的不对称聚合[13]以及手性支架(模板)诱导等。合成手性聚合物的传统方法具有一定的缺陷,如:需要使用价格昂贵的手性试剂和手性催化剂,需要经历复杂的合成步骤,同时合成的手性聚合物种类也十分有限。以非手性物质为原料来制备手性物质,不仅可以简化合成步骤,丰富手性物质的种类,同时对手性起源的研究也具有重要的科学和应用价值[14]。超分子手性组装由于组装单元之间较弱的非共价键相互作用而易于调控,通过简单的外界环境刺激就可以赋予非手性聚合物超分子手性[15-19]。相对于分子手性,超分子手性可以由溶剂[20]、温度[21]、pH[22]、声波[23]、光照[24]、氧化还原反应[25]和其他添加剂[26]等外部刺激性因素而进行动态调控。基于超分子手性这一特性,科学家们构建了各种类型的手性传感器。
手性源包括手性溶剂[19, 27]、手性小分子[28]、圆偏振光[29, 30]、不对称力学[31]和不对称手性液晶场[32]等,这些手性源可以诱导非手性物质产生手性。这些诱导方法降低了合成手性物质的成本,减少了合成步骤,丰富了手性物质的结构种类。在这些诱导方法中,手性支架/模板诱导法(示意图见图1)已被证明是一种诱导非手性物质产生超分子手性或螺旋性的简单、快捷且有效的方法,适用范围广泛。天然和人工合成的手性低聚物/聚合物均可以作为手性支架(Scaffold)或模板(Template),诱导非手性或无光学活性的客体构建超分子手性结构或螺旋结构,从而实现手性从低聚物/聚合物向非手性客体的转移。近年来,天然手性物质如多糖、氨基酸、DNA以及人工合成的螺旋聚合物均可作为螺旋诱导支架或模板。这些诱导支架(模板)使非手性客体在圆二色谱(CD)和圆偏振荧光光谱(CPL)中表现出明显的手性信号或光学活性特征。手性支架(模板)-非手性聚合物诱导系统的设计是基于非受限的、旋转自由的C―X(X = C,O,N,S)单键在络合过程中向受限的分子运动方向转变。需要注意的是,诱导支架是基于主客体间非共价相互作用力、用于构建手性支架/非手性客体复合结构的临时平台(Temporary platform)。非共价相互作用力包括C=O/HN、YH/π(Y:O,N)、阳离子/π、CH/X(X:F,O,N,H,C)、π/π、C―F/Si、静电作用、疏水作用和范德华力等。这种诱导支架在手性诱导完成后可人为除去,而诱导模板由于主客体分子间作用力太强在诱导完成后一般很难除去(Long-lived platform)[33, 34]。
图 1 手性支架(模板)诱导非手性物质手性组装示意图
Figure 1. Schematic illustration of chiral assembly of achiral substance induced by chiral scaffold/template
近年来,以低聚物/聚合物作为诱导支架(模板),实现了手性从手性低聚物或聚合物向非手性聚合物的转移。邹纲[35]、刘鸣华[36]、宛新华[37]、杨永刚[38]等课题组对合成手性聚合物进行了深入的研究,这对探究手性物质的起源和应用提供了较好的理论基础。本文分别以天然和人工合成的手性低聚物/聚合物诱导非手性物质手性组装为例,简单介绍了手性低聚物/聚合物诱导小分子及金属纳米粒子的手性,重点阐述了手性低聚物/聚合物诱导聚合物的手性组装,对手性低聚物/聚合物诱导法的科学进展、存在问题以及该领域的发展方向作了进一步的分析与讨论。
-
由于特殊的结构特征,裂褶菌多糖(Schizophyllan,SPG)在氢氧化钠溶液中形成的是单个单链无规卷曲结构(s-SPG),在中性溶液中却形成三链螺旋结构(t-SPG)。这种可逆的、溶剂可诱导的结构转变赋予了SPG更多奇特的性能,特别是将SPG作为手性模板诱导非手性聚合物产生螺旋性引起了越来越多科学家的关注[39, 40]。Shinkai等[41]发现将仅可溶于非极性有机溶剂(如己烷)的非手性低聚物甲基十硅烷(Permethyldecasilane,PMDS)和含有t-SPG水溶液的混合体系进行简单超声处理时,体系不会呈现任何手性信号。然而,在SPG单链无规卷曲结构向三链螺旋结构转变过程中,他们发现非手性低聚物PMDS呈现螺旋纳米纤维结构并伴随明显的手性信号的产生。该现象证明SPG可以充当手性模板诱导非手性低聚物PMDS形成螺旋结构。值得注意的是,这种螺旋的纳米纤维只能在s-SPG向t-SPG转变过程中才会产生,而不能通过与t-SPG的直接相互混合获得(图2)。此外,聚苯胺(PANI)也可以通过SPG手性模板诱导获得SPG/PANI螺旋形复合结构[42]。Numata和Li等[43]发现SPG充当手性模板可诱导非手性共轭聚噻吩(Achiral cationic polythiophene,PT-1)形成超分子手性复合结构,并通过原子力显微镜(AFM)观察到螺旋纳米线结构。基于SPG/PT-1复合结构,Haraguchi等[44]首次从共轭聚合物的超分子复合物中观察到明显的CPL增强现象。由于SPG的绝缘效应,SPG/PT-1复合物不仅在溶液状态而且在粉末状态都呈现出较高的量子效率,这种现象在常规手性大分子聚集体体系中很难实现。Ikeda等[45]通过“点击化学”改性可德兰多糖(Curdlan,CUR)得到可以在水中形成单链螺旋结构的阳离子凝胶多糖CUR-N+,发现仅仅通过简单的共混超声就可以将CUR-N+的手性传递到非手性低聚物PMDS和聚胞苷酸(Polycytidylic acid,Poly(C))中。Shiraki等[46]通过改性CUR设计了一种含有聚乙二醇的手性模板CUR-oeg。CUR-oeg不仅可以成功诱导非手性阳离子聚噻吩PT-1形成螺旋复合物,而且这种复合物可以响应外部刺激而发生结构变化,在智能设备(如传感器、开关等)上有着极大的应用潜力。基于客体结构和计算机理论模拟,他们还设计了两种不同键接位置(对位和间位)的苯-聚芴衍生物pPFS(Para-linked polyfluorene disulfonate)和mPFS(Meta-linked polyfluorene disulfonate)。通过使用天然手性SPG诱导模板,只有和苯环间位连接的聚芴衍生物mPFS才能和SPG络合形成螺旋复合结构[48]。这使得我们对合理设计非手性聚合物客体结构,通过手性模板诱导形成螺旋聚合物有了新的认识。
由于分子内和分子间无限的自由旋转运动,在诱导过程中,非带电手性支架(模板)分子和聚合物之间的相互作用机制仍不太清楚。Fujiki等使用三乙酸纤维素(Cellulose triacetate,CTA)及其衍生物(Cellulose acetate butyrate,CABu)(图3),利用理论计算及同位素跟踪发现芴类聚合物在CTA和CABu诱导下的手性维持、反转及外消旋化,证明了手性模板CTA/CABu诱导聚芴形成螺旋结构是源于分子间的C―H/C=O相互作用[48]。此外,天然手性线性多糖和环状寡糖均可作为手性支架,如二甲基纤维素[49]、直链淀粉[50]、α-环糊精[51]和环状多糖(Cyclic nigerosylnigerose,CNN)[52, 53]等均可诱导非手性客体形成手性复合结构,并且这些手性支架在诱导结束后均可除去。这些天然的手性支架对研究含蒽羧酸盐(AC)的光环化二聚反应具有重大的意义[55]。
-
由氨基酸组成的多肽是蛋白质的结构与功能片段,使蛋白质具有数以万计的生理功能。氨基酸本身除了具有很强的生物活性,在天然手性支架(模板)诱导非手性物质组装中也充当着不可或缺的作用。聚赖氨酸(图4)可以充当天然手性模板诱导非手性的四苯基磺酸卟啉(Porphine-meso-tetra(4-benzenesulfonate),TPPS)H-聚集或J-聚集形成超分子手性组装体[55]。Periasamy和Nezu等[56-59]研究发现,使用聚(L-赖氨酸)(Poly(L-lysine),PLL)充当模板诱导非手性TPPS的实验中,TPPS的J-聚集体和H-聚集体的CD信号均显示负的康顿效应。而Fukushima等[60, 61]研究发现,在多肽手性模板的构象几乎与NaCl浓度无关的前提下,由多肽诱导TPPS形成的J-聚集体在大量NaCl的存在下与H-聚集体的CD信号相反。这看似矛盾的现象激发了Liu等[62]探究H-聚集和J-聚集的手性信号与模板手性间的联系。他们发现,H-聚集体的诱导手性方向始终遵循PLL或聚(D-赖氨酸)(Poly(D-lysine),PDL)的手性方向,而J-聚集体的诱导手性方向可能与H-聚集体的诱导手性方向相同或相反,这取决于PLL/PDL与TPPS的混合顺序以及PLL/PDL与TPPS的物质的量之比(P/T)。当P/T <4时,J-和H-聚集体都显示出相同方向的CD信号。当P/T >4时,若将TPPS加入PLL中时,J-和H-聚集体的CD信号方向相反;而若将PLL加入TPPS中时,J-和H-聚集体的CD信号方向相同。此外,具有与H-聚集体CD信号方向相同的J-聚集体,在加热下发生手性反转。因此,他们提出当使用PLL或PDL作为手性模板诱导非手性TPPS时,TPPS手性聚集体的CD信号可能与之动力学和热力学的组装过程有关。
此外,Ihara等[63]使用聚赖氨酸充当手性模板在甲醇中诱导NK-2012染料分子形成螺旋结构并伴随较强的CD信号,并且这种(聚赖氨酸-NK2012)三维螺旋复合结构在溶液中可通过含二胺的添加剂进行调控。Koepf等[64]基于半胱氨酸设计合成了一种官能化的螺旋异氰化物蛋白质类支架,这种诱导支架富含精确定位的硫醇,可发生精确定位的反应。这些功能性诱导体系对复合手性诱导体系的机理研究和生物支架等实用性研究具有重要的意义。
-
DNA是自然界中最典型的双螺旋结构。使用DNA作为支架(模板)诱导客体组分自组装是一种自下而上的方法。上世纪90年代就有研究表明DNA具有作为手性模板诱导客体组分排列成二维几何形状的潜力[65]。DNA与客体分子的特定位点结合,也可以诱导其他DNA[66]或者蛋白质[67]等客体分子进行有序排列。此外,双链DNA的自组装和有序结构使其具有充当超分子手性支架的能力,苝、芘[68]、联苯[69]、偶氮苯[70, 71]等生色团和花青染料[72, 73]等可选择性替代DNA螺旋链中的碱基对,通过设计DNA支架(模板)的碱基对序列,能够有序地排列客体组分[74, 75]。Zheng等[76]设计了一种含苝的DNA序列,在DNA模板的诱导下形成头对头排列的串珠状二聚体和三聚体。Baumstark等[77]基于亲疏水相互作用,驱使一种含苝的碱基在DNA链中螺旋堆积,产生特征性荧光。这种含苝的DNA螺旋链可应用于分子诊断、碱基缺失的检测。此外,芘[78]和DNA螺旋链的非共价结合使得其能够彼此相互作用而沿着DNA进行螺旋排列。Wagenknecht等[68, 78]研究发现含有5个芘生色团的DNA螺旋阵列表现出强烈的荧光增强现象且可动态检测DNA碱基对的错误匹配。这种含芘的DNA复合结构在荧光生物传感器、纳米生物技术以及DNA动力学的研究中具有显著的应用潜力。相关诱导路线如图5所示。
图 5 DNA模板诱导非手性物质手性组装示意图
Figure 5. Schematic illustration of chiral assembly of achiral substance induced by DNA template
DNA螺旋链也可诱导纳米粒子进行规则排列。Yan等[67]通过将抗生蛋白链菌素模板化自组装到DNA纳米颗粒上,实现了蛋白质的周期性排列。1996年,Alivisatos等[79]将金纳米粒子引入到单链DNA分子,通过序列特异性的DNA杂交可以组装成二聚体和三聚体。Li等[80]研究发现将抗生蛋白链菌素标记的金纳米颗粒和DNA模板结合也可以形成5~10个纳米的直链。Xiao等[81]将金属纳米组分与DNA螺旋链共价连接,在DNA晶体生长过程中将金属纳米颗粒掺入到DNA支架当中进行组装。此外,金纳米粒子修饰的DNA组分与另一DNA支架的原位杂交,使DNA支架/金纳米粒子复合结构程序化地自组装成具有精确限定行间距的、紧密排列的阵列的设想成为了可能[82]。该方法广泛适用于存储器、传感器和其他应用的纳米级集成电路的设计赫尔制造。然而,基于DNA动态调整金纳米颗粒的手性组装结构和其手性光学性质的研究仍然具有一定的挑战性。最近,Lan等[83]研究发现基于DNA的折纸型超分子聚合物是动态控制金纳米棒螺旋结构的有效模板(图6)。这种金纳米棒螺旋结构的圆二色性振幅、峰值响应频率和螺旋方向等可以在基于DNA的折纸型超分子聚合物诱导的复合结构的重构中得到动态调控。利用天然的手性DNA充当诱导支架(模板)在生命科学,特别是研究手性的起源方面具有重要的科学意义。
-
除了使用天然手性低聚物/聚合物诱导支架(模板),手性低分子量凝胶剂(Low-molecular-weight gelator, LMWG)也是构造手性支架(模板)的理想材料[38, 84]。LMWG不仅可以自组装形成纳米带和螺旋纳米纤维等各种纳米结构,还可以充当超分子手性模板,诱导客体组分形成单手螺旋金属氧化物纳米管、聚合物纳米管和聚硅烷纳米纤维等螺旋结构。同时,还可以通过自组装技术来控制复合物的形态和结构。近年来,Shinkai等[85-88]利用LMWG的凝胶化成功制备了单螺旋二氧化硅纳米管、双螺旋二氧化硅纳米管和中空螺旋二氧化硅纳米管。Yang等[89, 90]对手性低分子凝胶剂诱导含硅材料的手性超分子组装进行了较为深入的研究。他们使用手性阳离子表面活性剂的自组装结构作为模板,在水和醇的混合溶剂中制备含硅纳米材料。通过改变催化剂NH3的浓度和水、醇体积比,制备了双螺旋介孔二氧化硅纳米纤维、单链松散卷曲介孔二氧化硅纳米纤维和扭曲介孔二氧化硅纳米带,进一步通过改变反应条件可有效控制纳米材料的螺旋间距[91]。LMWG充当手性支架(模板)诱导客体组分形成光学活性的螺旋结构在不对称催化、手性传感器和对映体分离等领域具有较大的应用前景。
最近,本课题组和刘鸣华教授课题组合作[92]研究了基于L-和D-谷氨酸衍生物凝胶剂(N,N′-bis-(octadecyl)-L(D)-Boc-glutamic,LBG和DBG)末端长烷基链的弱相互作用,首次报道了以LBG和DBG为手性支架诱导两种非手性共轭聚合物(Poly(9-(1-octylnonyl)-9H-carbazole-2,7-diyl), Poly(9,9-di-n-octylsila-fluorenyl-2,7-diyl),PSi8和PCz8)产生螺旋共凝胶(图7)。在去除手性支架后,PSi8和PCz8的螺旋性仍然保持不变。此外,Liu等[93-95]研究发现这种具有手性中心和2个长烷基链的LBG可作为通用有机凝胶剂。它可以在40多种溶剂中凝胶化,并且无论客体组分自身是否能够形成有机凝胶,它都可以在溶剂中与之混合形成稳定的共凝胶,诱导客体组分形成有序的螺旋结构,这些客体组分包括脂肪酸、极性化合物、芳烃、有机染料、金属离子配位化合物、聚合物和纳米材料等[95]。这个通用的手性支架(模板)为制造更多的手性软凝胶材料提供了有效可行的方法。
图 7 合成的手性支架(模板)和非手性客体结构示意图
Figure 7. Chemical structures of synthetic chiral scaffolds (templates) and achiral guests
Goto等[96]对合成手性支架(模板)诱导非手性客体的手性组装进行了较为深入的研究。他们设计合成了不同的谷氨酸衍生物手性模板,在极稀溶液中诱导非手性染料分子形成螺旋纤维状和囊泡状结构,并发现了明显的荧光增强现象。这种手性模板/非手性染料体系几乎消除了对客体荧光分子的复杂设计,通过选择适当的染料分子,可以实现荧光发射区域的高度可调性。此外,他们还发现手性透明质酸(HA)也可以诱导非手性花青染料(NK-77)形成螺旋复合结构,并且这种复合结构具有热响应转换性能,这一新颖而有趣的现象丰富了对手性模板诱导机理的研究[97](图8)。
-
Inouye等[98-100]在实验中发现乙炔基吡啶低聚物/聚合物在CHCl3和CH2Cl2等极性较小的溶剂中呈现出无序构象。他们基于乙炔基吡啶的化学结构猜想,如果乙炔基吡啶单体聚合,得到的低聚物/聚合物为了抵消偶极矩将采用未折叠的构象。若这种低聚物/聚合物遇到富含羟基的糖类衍生物,吡啶重复单元上的氮原子与羟基相互作用将会以大环的方式向中间弯曲,这种未折叠构象将会被诱导成有序的螺旋结构。随后,他们[101]基于氢键相互作用,使用合成的糖类衍生物模板诱导无序的乙炔基吡啶低聚物/聚合物转变为螺旋有序结构,证实了这一猜想的准确性(图9)。这一研究结果可应用于糖尿病诊断相关的特异性检测。
-
Fujiki教授课题组[102]首次选择人工合成的手性聚硅烷(PSi-S和PSi-R)作为诱导非手性聚芴(Poly(dioctylfluorene),PF8)的诱导支架,诱导非手性的聚芴产生螺旋结构,将聚硅烷的手性传递到非手性聚芴中(图10)。值得注意的是,这种手性聚硅烷支架在波长为313 nm的紫外光辐射下可快速地完全分解,这是设计合成手性聚合物/非手性聚合物诱导体系理想的、可光降解的螺旋支架。同时,非手性的PF8具有光化学稳定性,在除去手性聚硅烷支架后,PF8聚集体仍然保持较好的光学活性。手性聚硅烷和PF8的光降解能力的显著差异是设计这种手性聚硅烷/非手性聚芴复合结构的关键。随后,Fujiki课题组基于理论计算进一步探索手性聚硅烷支架和客体组分聚芴之间的非共价相互作用[103]。他们使用手性聚硅烷支架诱导具有低带隙、红光区域可吸收的非手性聚芴衍生物(Poly{[dioctylfluorene]-alt-[bis(thiophenyl)-benzothiazole]},PF8DBT)进行手性组装,发现PSi-S(R)/PF8DBT复合体系具有时间依赖性对称性破坏(Time-dependent Mirror Symmetry Breaking)特征,在手性聚硅烷完全除去后,诱导后的PF8DBT聚集体仍然保持光学活性。通过CD光谱和荧光光学显微镜等观察到PF8DBT聚集体手性随时间显著增强的光学特性。这个有趣的现象对研究手性聚硅烷诱导非手性聚芴及其衍生物的机理具有重要的意义[104]。
偶氮苯由于其特殊的光致顺反异构化特性通常用作光响应性材料,这种可逆的光致顺反异构化会引起其物理和化学性质的显著变化。本课题组[105]最近研究发现,手性聚硅烷支架可以诱导偶氮苯-芴共聚物(Poly((9,9-dioctylfluorenyl-2,7-diyl)-alt-4,4′-azobenzene),PF8Azo)形成手性组装体,将支架诱导手性和偶氮苯光致异构性有效地结合起来,构建出光控可逆的手性光开关。并且,这种支架诱导的PF8Azo聚集体在手性聚硅烷完全除去后仍然保持光学特性(图11)。
-
目前,天然和合成手性低聚物/聚合物均可以作为手性诱导的支架(模板),用于诱导非手性或无光学活性的客体组分构建超分子手性结构,能够将低聚物/聚合物诱导支架(模板)的手性传递到非手性客体上。此方法不仅可以诱导非手性客体产生光学活性,丰富手性物质的种类,还可以进一步拓宽其应用领域。利用低聚物/聚合物充当诱导支架(模板)诱导非手性组分进行手性组装不仅可以有效避免传统合成手性物质的复杂性,还减少了昂贵手性试剂的使用,实现了原子经济性,为手性材料的应用带来新的生机。目前该方法的缺点是可以充当诱导支架(模板)的物质,特别是基于人工合成的功能性低聚物/聚合物支架种类稀少,限制了该领域的进一步发展。因此,丰富诱导支架(模板)的种类将是该方法目前亟待解决的问题。在聚合物客体组分中引入特殊的官能团,或者利用无机物客体组分特殊的物化性质制备带有特殊响应性的手性超分子,实现其在手性领域的真正应用,将是该方法未来研究的主要方向。对该诱导体系的具体组装机理和理论计算的详细研究将会为该领域的研究揭开新的篇章。
手性低聚物/聚合物诱导非手性物质手性组装的研究进展
Advances in Chiral Assembly of Achiral Substance Induced by Chiral Oligomer/Polymer
-
摘要: 手性低聚物/聚合物充当支架(模板)诱导非手性物质的手性组装是近年来的研究热点之一。该方法不仅克服了传统手性聚合物合成方法中使用价格昂贵的手性试剂以及复杂的合成路线等缺点,还丰富了手性物质的种类,在生命科学特别在研究手性的起源上具有较为重要的科学意义。本文主要从天然和人工合成的手性低聚物/聚合物两类支架(模板)诱导非手性物质手性组装的发展、手性支架(模板)诱导非手性聚合物和无机物手性组装的研究进展以及该方法未来的研究重点和发展趋势这几个方面展开综述。Abstract: The chiral oligomers/polymers are usually used as the scaffolds or templates to induce the helicity/chirality of achiral substances, which has been one of the research hotspots in recent years. Compared to traditional methods, this method can not only avoid the use of expensive chiral reagents and complex synthetic routes, but also enrich the types of chiral substances, which has potential applications in bioscience, especially in the field of exploring the origin of chirality. In this review, we briefly introduce the historical development of chiral assembly of achiral substances induced by natural/synthetic chiral oligomers/polymers. Additionally, the advances in chiral assembly of achiral polymers and inorganic compounds induced by chiral oligomers/polymers scaffolds (templates) strategies are also discussed. The research focuses and development trends of this method are summarized in the end. With implications for biological helices and functions, further applications of chirality-responsive polymers based novel chiral materials as enantioselective catalysts and adsorbents will be an interesting and important challenge. In the future, oligomer/polymer scaffolds (templates) strategies will receive much more attention from scientists in the fields of photoelectric materials, chiral resolution, enantiomeric sensors and asymmetric polymerization.
-
Key words:
- chiral assembly /
- chiral scaffold /
- chiral template /
- helicity /
- polymer
-
-
[1] CORNELISSEN J J L M, ROWAN A E, NOLTE R J M, et al. Chiral architectures from macromolecular building blocks [J]. Chemical Reviews,2001,101(12):4039-4070. doi: 10.1021/cr990126i [2] FUJIKI M. Optically active polysilylenes: State-of-the-art chiroptical polymers [J]. Macromolecular Rapid Communications,2001,22(8):539-563. doi: 10.1002/1521-3927(20010501)22:8<539::AID-MARC539>3.0.CO;2-K [3] NAKANO T, OKAMOTO Y. Synthetic helical polymers: Conformation and function [J]. Chemical Reviews,2001,101(12):4013-4038. doi: 10.1021/cr0000978 [4] YASHIMA E, MAEDA K. Chirality-responsive helical polymers [J]. Macromolecules,2008,41(1):3-12. doi: 10.1021/ma071453s [5] APPLEQUIST J. Optical-activity-biot bequest [J]. American Scientist,1987,75(1):59-68. [6] YASHIMA E, MAEDA K, IIDA H, et al. Helical polymers: Synthesis, structures, and functions [J]. Chemical Reviews,2009,109(11):6102-6211. doi: 10.1021/cr900162q [7] LIU G F, ZHANG D, FENG C L. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels [J]. Angewandte Chemie: International Edition,2014,53(30):7789-7793. doi: 10.1002/anie.201403249 [8] MATHEWS M, ZOLA R S, HURLEY S, et al. Light-driven reversible handedness inversion in self-organized helical superstructures [J]. Journal of the American Chemical Society,2010,132(51):18361-18366. doi: 10.1021/ja108437n [9] LI Q, GREEN L, VENKATARAMAN N, et al. Reversible photoswitchable axially chiral dopants with high helical twisting power [J]. Journal of the American Chemical Society,2007,129(43):12908-12909. doi: 10.1021/ja0747573 [10] REKHARSKY M V, YAMAMURA H, INOUE C, et al. Chiral recognition in cucurbituril cavities [J]. Journal of the American Chemical Society,2006,128(46):14871-14880. doi: 10.1021/ja063323p [11] 黄汉民, 郑卓, 陈惠麟. 手性有机分子催化剂在不对称催化中的应用 [J]. 分子催化,2003,17(5):389-399. doi: 10.3969/j.issn.1001-3555.2003.05.015 [12] NISHIMURA S, ABRAMS N, LEWIS B A, et al. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals [J]. Journal of the American Chemical Society,2003,125(20):6306-6310. doi: 10.1021/ja034650p [13] YU H B, HU Q S, PU L. The first optically active BINOL-BINAP copolymer catalyst: Highly stereoselective tandem asymmetric reactions [J]. Journal of the American Chemical Society,2000,122(27):6500-6501. [14] 赵银, 殷露, 刘晶晶, 等. 手性溶剂诱导非手性物质手性的研究进展 [J]. 功能高分子学报,2016,29(1):20-28. [15] JIANG S Q, ZHAO Y, WANG L B, et al. Photocontrollable induction of supramolecular chirality in achiral side chain Azo-containing polymers through preferential chiral solvation [J]. Polymer Chemistry,2015,6(23):4230-4239. doi: 10.1039/C5PY00496A [16] LIU J F, ZHANG J, ZHANG S S, et al. Chiroptical generation and amplification of hyperbranched π-conjugated polymers in aggregation states driven by limonene chirality [J]. Polymer Chemistry,2014,5(3):784-791. doi: 10.1039/C3PY01037F [17] YIN L, ZHAO Y, JIANG S Q, et al. Preferential chiral solvation induced supramolecular chirality in optically inactive star Azo polymers: Photocontrollability, chiral amplification and topological effects [J]. Polymer Chemistry,2015,6(39):7045-7052. doi: 10.1039/C5PY01175B [18] YIN L, ZHAO Y, LIU M, et al. Induction of supramolecular chirality by chiral solvation in achiral Azo polymers with different spacer lengths and push-pull electronic substituents: Where will chiral induction appear? [J]. Polymer Chemistry,2017,8(12):1906-1913. doi: 10.1039/C7PY00130D [19] ZHAO Y, ABDUL RAHIM N A, XIA Y J, et al. Supramolecular chirality in achiral polyfluorene: Chiral gelation, memory of chirality, and chiral sensing property [J]. Macromolecules,2016,49(9):3214-3221. doi: 10.1021/acs.macromol.6b00376 [20] PETERCA M, IMAM M R, AHN C H, et al. Transfer, amplification, and inversion of helical chirality mediated by concerted interactions of C3-supramolecular dendrimers [J]. Journal of the American Chemical Society,2011,133(7):2311-2328. doi: 10.1021/ja110753s [21] DUAN P F, LI Y G, LI L C, et al. Multiresponsive chiroptical switch of an azobenzene-containing lipid: Solvent, temperature, and photoregulated supramolecular chirality [J]. Journal of Physical Chemistry B,2011,115(13):3322-3329. doi: 10.1021/jp110636b [22] KUROUSKI D, LU X F, POPOVA L, et al. Is supramolecular filament chirality the underlying cause of major morphology differences in amyloid fibrils? [J]. Journal of the American Chemical Society,2014,136(6):2302-2312. doi: 10.1021/ja407583r [23] KUMAR J, NAKASHIMA T, KAWAI T. Inversion of supramolecular chirality in bichromophoric perylene bisimides: Influence of temperature and ultrasound [J]. Langmuir,2014,30(21):6030-6037. doi: 10.1021/la500497g [24] GOPAL A, HIFSUDHEEN M, FURUMI S, et al. Thermally assisted photonic inversion of supramolecular handedness [J]. Angewandte Chemie: International Edition,2012,51(42):10505-10509. doi: 10.1002/anie.201205332 [25] MIAO W G, ZHANG L, WANG X F, et al. A dual-functional metallogel of amphiphilic copper(II) quinolinol: Redox responsiveness and enantioselectivity [J]. Chemistry: A European Journal,2013,19(9):3029-3036. doi: 10.1002/chem.201203401 [26] OGOSHI T, AKUTSU T, YAMAFUJI D, et al. Solvent- and achiral-guest-triggered chiral inversion in a planar chiral pseudo [J]. Angewandte Chemie: International Edition,2013,52(31):8111-8115. doi: 10.1002/anie.v52.31 [27] 张双双, 刘江飞, 张键, 等. 溶剂手性转移法制备超支化共轭聚合物手性荧光纳米粒子 [J]. 高分子学报,2013(4):426-435. [28] MIAO T F, YIN L, CHENG X X, et al. Chirality construction from preferred π-π stacks of achiral azobenzene units in polymer: Chiral induction, transfer and memory [J]. Polymers,2018,10:612. doi: 10.3390/polym10060612 [29] WANG L B, YIN L, ZHANG W, et al. Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium [J]. Journal of the American Chemical Society,2017,139(37):13218-13226. doi: 10.1021/jacs.7b07626 [30] 殷露, 缪腾飞, 程笑笑, 等. 光诱导非手性聚合物的手性研究进展 [J]. 功能高分子学报,2018,31(5):387-401. [31] D'URSO A, RANDAZZO R, LO TARO L, et al. Vortexes and nanoscale chirality [J]. Angewandte Chemie: International Edition,2010,49(1):108-112. doi: 10.1002/anie.200903543 [32] AKAGI K. Helical polyacetylene: Asymmetric polymerization in a chiral liquid-crystal field [J]. Chemical Reviews,2009,109(11):5354-5401. doi: 10.1021/cr900198k [33] SCHWARTZ E, LE GAC S, CORNELISSEN J J L M, et al. Macromolecular multi-chromophoric scaffolding [J]. Chemical Society Reviews,2010,39(5):1576-1599. doi: 10.1039/b922160c [34] HILL D J, MIO M J, PRINCE R B, et al. A field guide to foldamers [J]. Chemical Reviews,2001,101(12):3893-4011. doi: 10.1021/cr990120t [35] XU Y Y, YANG G, XIA H Y, et al. Enantioselective synthesis of helical polydiacetylene by application of linearly polarized light and magnetic field [J]. Nature Communications,2014,5:5050. doi: 10.1038/ncomms6050 [36] LIU M H, ZHANG L, WANG T Y. Supramolecular chirality in self-assembled systems [J]. Chemical Reviews,2015,115(15):7304-7397. doi: 10.1021/cr500671p [37] WANG S, FENG X Y, ZHANG J, et al. Helical conformations of poly(3,5-disubstituted phenylacetylene)s tuned by pendant structure and solvent [J]. Macromolecules,2017,50(9):3489-3499. doi: 10.1021/acs.macromol.7b00615 [38] WANG L W, LI Y, WANG H R, et al. Nanofabrication of helical hybrid silica nanotubes using anionic gelators [J]. Materials Chemistry and Physics,2010,124(1):609-613. doi: 10.1016/j.matchemphys.2010.07.021 [39] DELBIANCO M, BHARATE P, VARELA-ARAMBURU S, et al. Carbohydrates in supramolecular chemistry [J]. Chemical Reviews,2016,116(4):1693-1752. doi: 10.1021/acs.chemrev.5b00516 [40] SUGIKAWA K, KANEKO K, SADA K, et al. A molecular template designed by the modification of a helix-forming β-1,3-glucan polysaccharide to fabricate one-dimensional nanostructures [J]. Langmuir,2010,26(24):19100-19105. doi: 10.1021/la101335a [41] HARAGUCHI S, HASEGAWA T, NUMATA M, et al. Oligosilane-nanofibers can be prepared through fabrication of permethyldecasilane within a helical superstructure of schizophyllan [J]. Organic Letters,2005,7(25):5605-5608. doi: 10.1021/ol052170s [42] NUMATA M, HASEGAWA T, FUJISAWA T, et al. β-1,3-glucan (Schizophyllan) can act as a one-dimensional host for creation of novel poly(aniline) nanofiber structures [J]. Organic Letters,2004,6(24):4447-4450. doi: 10.1021/ol0483448 [43] LI C, NUMATA M, BAE A H, et al. Self-assembly of supramolecular chiral insulated molecular wire [J]. Journal of the American Chemical Society,2005,127(13):4548-4549. doi: 10.1021/ja050168q [44] HARAGUCHI S, NUMATA M, LI C, et al. Circularly polarized luminescence from supramolecular chiral complexes of achiral conjugated polymers and a neutral polysaccharide [J]. Chemistry Letters,2009,38(3):254-255. doi: 10.1246/cl.2009.254 [45] IKEDA M, HASEGAWA T, NUMATA M, et al. Instantaneous inclusion of a polynucleotide and hydrophobic guest molecules into a helical core of cationic β-1,3-glucan polysaccharide [J]. Journal of the American Chemical Society,2007,129(13):3979-3988. doi: 10.1021/ja0684343 [46] SHIRAKI T, DAWN A, TSUCHIYA Y, et al. Thermo- and solvent-responsive polymer complex created from supramolecular complexation between a helix-forming polysaccharide and a cationic polythiophene [J]. Journal of the American Chemical Society,2010,132(39):13928-13935. doi: 10.1021/ja1067349 [47] SHIRAKI T, TSUCHIYA Y, NOGUCHI T, et al. Creation of circularly polarized luminescence from an achiral polyfluorene derivative through complexation with helix-forming polysaccharides: Importance of the meta-linkage chain for helix formation [J]. Chemistry: An Asian Journal,2014,9(1):218-222. doi: 10.1002/asia.201301216 [48] GUO S B, SUZUKI N, FUJIKI M. Oligo- and polyfluorenes meet cellulose alkyl esters: Retention, inversion, and racemization of circularly polarized luminescence (CPL) and circular dichroism (CD) via intermolecular C―H/O=C interactions [J]. Macromolecules,2017,50(5):1778-1789. doi: 10.1021/acs.macromol.6b02762 [49] FUKUHARA G, NAKAMURA T, YANG C, et al. Diastereodifferentiating photocyclodimerization of 2-anthracenecarboxylate tethered to cellulose scaffold [J]. Journal of Organic Chemistry,2010,75(12):4307-4310. doi: 10.1021/jo100596n [50] FUKUHARA G, NAKAMURA T, YANG C, et al. Dual chiral, dual supramolecular diastereodifferentiating photocyclodimerization of 2-anthracenecarboxylate tethered to amylose scaffold [J]. Organic Letters,2010,12(15):3510-3513. doi: 10.1021/ol101362s [51] YANG C, KE C F, LIANG W T, et al. Dual supramolecular photochirogenesis: Ultimate stereocontrol of photocyclodimerization by a chiral scaffold and confining host [J]. Journal of the American Chemical Society,2011,133(35):13786-13789. doi: 10.1021/ja202020x [52] FUKUHARA G, NAKAMURA T, KAWANAMI Y, et al. Diastereodifferentiating photocyclodimerization of 2-anthracenecarboxylates tethered to a cyclic tetrasaccharide scaffold: Critical control of photoreactivity and stereoselectivity [J]. Journal of Organic Chemistry,2013,78(21):10996-11006. doi: 10.1021/jo401977f [53] FUKUHARA G, NAKAMURA T, KAWANAMI Y, et al. Strictly diastereocontrolled photocyclodimerization of 2-anthracenecarboxylates tethered to cyclic tetrasaccharides [J]. Chemical Communications,2012,48(73):9156-9158. doi: 10.1039/c2cc34880b [54] FUKUHARA G, IIDA K, KAWANAMI Y, et al. Excited-state dynamics achieved ultimate stereocontrol of photocyclodimerization of anthracenecarboxylates on a glucose scaffold [J]. Journal of the American Chemical Society,2015,137(47):15007-15014. doi: 10.1021/jacs.5b09775 [55] PURRELLO R, BELLACCHIO E, GURRIERI S, et al. pH modulation of porphyrins self-assembly onto polylysine [J]. Journal of Physical Chemistry B,1998,102(44):8852-8857. doi: 10.1021/jp9828686 [56] IKEDA S, NEZU T, EBERT G. Induced CD and interaction of some porphyrin derivatives with alpha-helical polypeptides in aqueous solutions [J]. Biopolymers,1991,31(11):1257-1263. doi: 10.1002/(ISSN)1097-0282 [57] NEZU T, IKEDA S. Induction of circular dichroism on the soret bands of a symmetric water-soluble porphyrin by poly(L-lysine) in three conformations [J]. Bulletin of the Chemical Society of Japan,1993,66(1):25-31. doi: 10.1246/bcsj.66.25 [58] NEZU T, IKEDA S. Induction of circular-dichroism of symmetrical porphyrins bound to random coil polypeptides in aqueous solutions [J]. International Journal of Biological Macromolecules,1993,15(2):101-103. doi: 10.1016/0141-8130(93)90005-7 [59] KOTI A S R, PERIASAMY N. Self-assembly of template-directed J-aggregates of porphyrin [J]. Chemistry of Materials,2003,15(2):369-371. doi: 10.1021/cm025664h [60] FUKUSHIMA Y. Interaction of porphyrin derivatives with a beta-sheet structure of a zwitterionic polypeptide in aqueous solution [J]. Polymer Bulletin,2001,45(6):479-485. doi: 10.1007/s002890170101 [61] FUKUSHIMA Y. Salt effect on the interaction of 22,24-diprotonated 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin with a beta-sheet structure of a zwitterionic polypeptide [J]. Bulletin of the Chemical Society of Japan,1996,69(6):1719-1726. doi: 10.1246/bcsj.69.1719 [62] ZHANG L, LIU M H. Supramolecular chirality and chiral inversion of tetraphenylsulfonato porphyrin assemblies on optically active polylysine [J]. Journal of Physical Chemistry B,2009,113(42):14015-14020. doi: 10.1021/jp902870f [63] IHARA H, SHIBATA M, HIRAYAMA C. Molecular recognition using cyanine-α-helical poly(L-Lysine) complexes in methanol [J]. Chemistry Letters,1992,21(9):1731-1734. doi: 10.1246/cl.1992.1731 [64] LE GAC S, SCHWARTZ E, KOEPF M, et al. Cysteine-containing polyisocyanides as versatile nanoplatforms for chromophoric and bioscaffolding [J]. Chemistry: A European Journal,2010,16(21):6176-6186. doi: 10.1002/chem.v16:21 [65] WINFREE E, LIU F R, WENZLER L A, et al. Design and self-assembly of two-dimensional DNA crystals [J]. Nature,1998,394(6693):539-544. doi: 10.1038/28998 [66] LIU F R, SHA R J, SEEMAN N C. Modifying the surface features of two-dimensional DNA crystals [J]. Journal of the American Chemical Society,1999,121(5):917-922. doi: 10.1021/ja982824a [67] YAN H, PARK S H, FINKELSTEIN G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires [J]. Science,2003,301(5641):1882-1884. doi: 10.1126/science.1089389 [68] MAYER-ENTHART E, WAGENKNECHT H A. Structure-sensitive and self-assembled helical pyrene array based on DNA architecture [J]. Angewandte Chemie: International Edition,2006,45(20):3372-3375. [69] ZAHN A, LEUMANN C J. Recognition properties of donor- and acceptor-modified biphenyl-DNA [J]. Chemistry: A European Journal,2008,14(4):1087-1094. doi: 10.1002/(ISSN)1521-3765 [70] KASHIDA H, ASANUMA H, KOMIYAMA M. Alternating hetero H aggregation of different dyes by interstrand stacking from two DNA-dye conjugates [J]. Angewandte Chemie: International Edition,2004,43(47):6522-6525. doi: 10.1002/(ISSN)1521-3773 [71] ASANUMA H, TAKARADA T, YOSHIDA T, et al. Enantioselective incorporation of azobenzenes into oligodeoxyribonucleotide for effective photoregulation of duplex formation [J]. Angewandte Chemie: International Edition,2001,40(14):2671-2673. doi: 10.1002/(ISSN)1521-3773 [72] GAROFF R A, LITZINGER E A, CONNOR R E, et al. Helical aggregation of cyanine dyes on DNA templates: Effect of dye structure on formation of homo- and heteroaggregates [J]. Langmuir,2002,18(16):6330-6337. doi: 10.1021/la025742f [73] WANG M M, SILVA G L, ARMITAGE B A. DNA-templated formation of a helical cyanine dye J-aggregate [J]. Journal of the American Chemical Society,2000,122(41):9977-9986. doi: 10.1021/ja002184n [74] NGUYEN T, BREWER A, STULZ E. Duplex stabilization and energy transfer in zipper porphyrin-DNA [J]. Angewandte Chemie: International Edition,2009,48(11):1974-1977. doi: 10.1002/anie.v48:11 [75] GOLLA M, ALBERT S K, ATCHIMNAIDU S, et al. DNA-decorated, helically twisted nanoribbon: A scaffold for the fabrication of one-dimensional, chiral, plasmonic nanostructures [J]. Angewandte Chemie: International Edition,2019,58(1):1-6. doi: 10.1002/anie.201813481 [76] ZHENG Y, LONG H, SCHATZ G C, et al. A cooperative beads-on-a-string approach to exceptionally stable DNA triplexes [J]. Chemical Communications,2006(36):3830-3832. [77] BAUMSTARK D, WAGENKNECHT H A. Fluorescent hydrophobic zippers inside duplex DNA: Interstrand stacking of perylene-3,4:9,10-tetracarboxylic acid bisimides as artificial DNA base dyes [J]. Chemistry: A European Journal,2008,14(22):6640-6645. doi: 10.1002/chem.v14:22 [78] BARBARIC J, WAGENKNECHT H A. DNA as a supramolecular scaffold for the helical arrangement of a stack of 1-ethynylpyrene chromophores [J]. Organic and Biomolecular Chemistry,2006,4(11):2088-2090. [79] ALIVISATOS A P, JOHNSSON K P, PENG X G, et al. Organization of 'nanocrystal molecules' using DNA [J]. Nature,1996,382(6592):609-611. doi: 10.1038/382609a0 [80] LI H Y, PARK S H, REIF J H, et al. DNA-templated self-assembly of protein and nanoparticle linear arrays [J]. Journal of the American Chemical Society,2004,126(2):418-419. doi: 10.1021/ja0383367 [81] XIAO S J, LIU F R, ROSEN A E, et al. Selfassembly of metallic nanoparticle arrays by DNA scaffolding [J]. Journal of Nanoparticle Research,2002,4(4):313-317. doi: 10.1023/A:1021145208328 [82] LE J D, PINTO Y, SEEMAN N C, et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface [J]. Nano Letters,2004,4(12):2343-2347. doi: 10.1021/nl048635+ [83] LAN X, LIU T, WANG Z, et al. DNA-guided plasmonic helix with switchable chirality [J]. Journal of the American Chemical Society,2018,140(37):11763-11770. doi: 10.1021/jacs.8b06526 [84] HANABUSA K, YAMADA M, KIMURA M, et al. Prominent gelation and chiral aggregation of alkylamides derived from trans-1,2-diaminocyclohexane [J]. Angewandte Chemie: International Edition,1996,35(17):1949-1951. doi: 10.1002/(ISSN)1521-3773 [85] JUNG J H, ONO Y, HANABUSA K, et al. Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives [J]. Journal of the American Chemical Society,2000,122(20):5008-5009. doi: 10.1021/ja000449s [86] ONO Y, NAKASHIMA K, SANO M, et al. Organic gels are useful as a template for the preparation of hollow fiber silica [J]. Chemical Communications,1998,14(1):1477-1478. [87] SUGIYASU K, TAMARU S, TAKEUCHI M, et al. Double helical silica fibrils by sol-gel transcription of chiral aggregates of gemini surfactants [J]. Chemical Communications,2002(11):1212-1213. [88] van BOMMEL K J C, FRIGGERI A, SHINKAI S. Organic templates for the generation of inorganic materials [J]. Angewandte Chemie: International Edition,2003,42(9):980-999. doi: 10.1002/anie.200390284 [89] HUO H J, LI Y, YUAN Y, et al. Chiral carbonaceous nanotubes containing twisted carbonaceous nanoribbons, prepared by the carbonization of chiral organic self-assemblies [J]. Chemistry: An Asian Journal,2014,9(10):2866-2871. doi: 10.1002/asia.201402569 [90] LIU D, LI B Z, GUO Y M, et al. Inner surface chirality of single-handed twisted carbonaceous tubular nanoribbons [J]. Chirality,2015,27(11):809-815. doi: 10.1002/chir.v27.11 [91] YANG Y G, SUZUKI M, OWA S, et al. Control of helical silica nanostructures using a chiral surfactant [J]. Journal of Materials Chemistry,2006,16(17):1644-1650. doi: 10.1039/b517121k [92] YANG D, ZHAO Y, LV K, et al. A strategy for tuning achiral main-chain polymers into helical assemblies and chiral memory systems [J]. Soft Matter,2016,12(4):1170-1175. doi: 10.1039/C5SM02547H [93] LV K, QIN L, WANG X F, et al. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding [J]. Physical Chemistry Chemical Physics,2013,15(46):20197-20202. doi: 10.1039/c3cp53620c [94] LI Y G, WANG T Y, LIU M H. Gelating-induced supramolecular chirality of achiral porphyrins: Chiroptical switch between achiral molecules and chiral assemblies [J]. Soft Matter,2007,3(10):1312-1317. doi: 10.1039/b710165a [95] DUAN P F, LI Y G, JIANG J, et al. Towards a universal organogelator: A general mixing approach to fabricate various organic compounds into organogels [J]. Science China: Chemistry,2011,54(7):1051-1063. doi: 10.1007/s11426-011-4295-x [96] GOTO T, OKAZAKI Y, UEKI M, et al. Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates [J]. Angewandte Chemie: International Edition,2017,56(11):2989-2993. doi: 10.1002/anie.201612331 [97] SAGAWA T, TOBATA H, IHARA H. Exciton interactions in cyanine dye-hyaluronic acid (HA) complex: reversible and biphasic molecular switching of chromophores induced by random coil-to-double-helix phase transition of HA [J]. Chemical Communications,2004,18:2090-2091. [98] INOUYE M, CHIBA J, NAKAZUMI H. Glucopyranoside recognition by polypyridine-macrocyclic receptors possessing a wide cavity with a flexible linkage [J]. Journal of Organic Chemistry,1999,64(22):8170-8176. doi: 10.1021/jo9911138 [99] INOUYE M, TAKAHASHI K, NAKAZUMI H. Remarkably strong, uncharged hydrogen-bonding interactions of polypyridine-macrocyclic receptors for deoxyribofuranosides [J]. Journal of the American Chemical Society,1999,121(2):341-345. doi: 10.1021/ja983539u [100] INOUYE M, MIYAKE T, FURUSYO M, et al. Molecular recognition of β-ribofuranosides by synthetic polypyridine-macrocyclic receptors [J]. Journal of the American Chemical Society,1995,117(50):12416-12425. doi: 10.1021/ja00155a006 [101] INOUYE M, WAKI M, ABE H. Saccharide-dependent induction of chiral helicity in achiral synthetic hydrogen-bonding oligomers [J]. Journal of the American Chemical Society,2004,126(7):2022-2027. doi: 10.1021/ja039371g [102] RAHIM N A A, FUJIKI M. Aggregation-induced scaffolding: Photoscissable helical polysilane generates circularly polarized luminescent polyfluorene [J]. Polymer Chemistry,2016,7(28):4618-4629. doi: 10.1039/C6PY00595K [103] FUJIKI M, YOSHIMOTO S. Time-evolved, far-red, circularly polarised luminescent polymer aggregates endowed with sacrificial helical Si―Si bond polymers [J]. Materials Chemistry Frontiers,2017,1(9):1773-1785. doi: 10.1039/C7QM00096K [104] DUONG S T, FUJIKI M. The origin of bisignate circularly polarized luminescence (CPL) spectra from chiral polymer aggregates and molecular camphor: Anti-Kasha's rule revealed by CPL excitation (CPLE) spectra [J]. Polymer Chemistry,2017,8(32):4673-4679. doi: 10.1039/C7PY00958E [105] CHEN H L, YIN L, LIU M, et al. Aggregation-induced chiroptical generation and photoinduced switching of achiral azobenzene-alt-fluorene copolymer endowed with left- and right-handed helical polysilanes [J]. RSC Advances,2019(9):4849-4856. doi: 10.1039/C8RA09345H -