[1] SHIN H, LEE S, KIM K, et al. Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit [J]. Advanced Materials,2014,26(27):4730-4734. doi: 10.1002/adma.201400955
[2] ZHAO Y, GUO Y, LIU Y. 25th Anniversary article: Recent advances in n-type and ambipolar organic field-effect transistors [J]. Advanced Materials,2013,25(38):5372-5391. doi: 10.1002/adma.201302315
[3] LI G, ZHU R, YANG Y. Polymer solar cells [J]. Nature Photonics,2012,6(3):153-161. doi: 10.1038/nphoton.2012.11
[4] 袁峰, 周丹, 湛烈, 等. 有机太阳能电池空穴传输材料的研究进展 [J]. 功能高分子学报,2018,31(6):530-539.
[5] WANG G, MELKONYAN F, FACCHETTI A, et al. All-polymer solar cells: recent progress, challenges, and prospects [J]. Angewandte Chemie International Edition,2019,58(13):4129-4142. doi: 10.1002/anie.201808976
[6] CARSTEN B, HE F, SON H, et al. Stille polycondensation for synthesis of functional materials [J]. Chemical Reviews,2011,111(3):1493-1528. doi: 10.1021/cr100320w
[7] MARROCCHI A, FACCHETTI, A, LANARI D, et al. Current methodologies for a sustainable approach to π-conjugated organic semiconductors [J]. Energy and Environmental Science,2016,9(3):763-786.
[8] GAO Y, BAI J, SUI Y, et al. High mobility ambipolar diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation: Influence of thiophene moieties and side chains [J]. Macromolecules,2018,51(21):8752-8760. doi: 10.1021/acs.macromol.8b01112
[9] TAKAHASHI M, MASUI K, SEKIGUCHI H, et al. Palladium-catalyzed C−H homocoupling of bromothiophene derivatives and synthetic application to well-defined oligothiophenes [J]. Journal of the American Chemical Society,2006,128(33):10930-10933. doi: 10.1021/ja060749v
[10] BOHRA H, WANG M. Direct C–H arylation: A “Greener” approach towards facile synthesis of organic semiconducting molecules and polymers [J]. Journal of Materials Chemistry A,2017,5(23):11550-11571.
[11] WU W, LI J, ZHAO Z, et al. Synthesis of largely π-extended naphthalenediimides via C–H activation towards highly soluble and narrow band-gap organic optoelectronic materials [J]. Organic Chemistry Frontiers,2017,4(5):823-827. doi: 10.1039/C7QO00061H
[12] CAO C, XIAO M, YANG X, et al. Cyanovinylene-based copolymers synthesized by tin-free Knoevenagel polycondensation for high efficiency polymer solar cells [J]. Journal of Materials Chemistry C,2018,6(30):8020-8027. doi: 10.1039/C8TC02021C
[13] ZHOU T, GONG Y, GUO J. Covalent organic frameworks: Design, synthesis and applications [J]. Journal of Functional Polymers,2018,31(3):189-215.
[14] BABU H, BAI M, RAO M. Functional π conjugated two-dimensional covalent organic frameworks [J]. ACS Appled Materials and Interfaces,2019,11(12):11029-11060.
[15] WURTHNER F, STOLTE M. Naphthalene and perylene diimides for organic transistors [J]. Chemical Communications,2011,47(18):5109-5115. doi: 10.1039/c1cc10321k
[16] GUO X, FACCHETTI A, MARKS T. Imide- and amide-functionalized polymer semiconductors [J]. Chemical Reviews,2014,114(18):8943-9021. doi: 10.1021/cr500225d
[17] KOBAISI M, BHOSALE S, LATHAM K, et al. Functional naphthalene diimides: Synthesis, properties, and applications [J]. Chemical Reviews,2016,116(19):11685-11796. doi: 10.1021/acs.chemrev.6b00160
[18] SUN H, WANG L, WANG Y, et al. Imide-functionalized polymer semiconductors [J]. Chemistry A European Journal,2019,25(1):87-105. doi: 10.1002/chem.201803605
[19] WANG Y, HASEGAWA T, MATSUMOTO H, et al. Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding [J]. Journal of the American Chemical Society,2019,141(48):3566-3575.
[20] CHEN Z, ZHENG Y, YAN H, et al. Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers: Synthesis and semiconducting properties in bottom-gate N-channel organic transistors [J]. Journal of the American Chemical Society,2009,131(1):8-9. doi: 10.1021/ja805407g
[21] YAN H, CHEN Z, ZHENG Y, et al. A high-mobility electron-transporting polymer for printed transistors [J]. Nature,2009,457(7230):679-687. doi: 10.1038/nature07727
[22] GAO X, HU Y. Development of n-type organic semiconductors for thin film transistors: A viewpoint of molecular design [J]. Journal of Materials Chemistry C,2014,2(17):3099-3117. doi: 10.1039/C3TC32046D
[23] ZHANG F, HU Y, SCHUETTFORT T, et al. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm2·V−1·s−1 [J]. Journal of the American Chemical Society,2013,135(6):2338-2349. doi: 10.1021/ja311469y
[24] ZHAO Z, ZHANG F, HU Y, et al. Naphthalenediimides fused with 2-(1,3-dithiol-2-ylidene)acetonitrile: Strong electron-deficient building blocks for high-performance n-type polymeric semiconductors [J]. ACS Macro Letters,2014,3(11):1174-1177. doi: 10.1021/mz500603f
[25] FELDBLYUM J, MCCREERY C, ANDREWS S, et al. Few-layer, large-area, 2D covalent organic framework semiconductor thin films [J]. Chemical Communications,2015,51(73):13894-13897. doi: 10.1039/C5CC04679C