[1] de GENNES P G. Soft matter (Nobel lecture) [J]. Angewandte Chemie: International Edition,1992,31(7):842-845. doi: 10.1002/anie.199208421
[2] WALTHER A, MULLER A H E. Janus particles: Synthesis, self-assembly, physical properties, and applications [J]. Chemical Reviews,2013,113(7):5194-5261. doi: 10.1021/cr300089t
[3] CASAGRANDE C, FABRE P, RAPHAEL E, et al. “Janus beads”: Realization and behaviour at water/oil interfaces [J]. Europhysics Letters,1989,9(3):251-255. doi: 10.1209/0295-5075/9/3/011
[4] CHOI J, ZHAO Y, ZHANG D, et al. Patterned fluorescent particles as nanoprobes for the investigation of molecular interactions [J]. Nano Letters,2003,3(8):995-1000. doi: 10.1021/nl034106e
[5] GIBBS J G, ZHAO Y P. Autonomously motile catalytic nanomotors by bubble propulsion [J]. Applied Physics Letters,2009,94(16):163104. doi: 10.1063/1.3122346
[6] NISISAKO T, TORII T, TAKAHASHI T, et al. Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system [J]. Advanced Materials,2006,18(9):1152-1156. doi: 10.1002/adma.200502431
[7] MOU F, CHEN C, ZHONG Q, et al. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma [J]. ACS Applied Materials & Interfaces,2014,6(12):9897-9903.
[8] NIE L, LIU S, SHEN W, et al. One-pot synthesis of amphiphilic polymeric Janus particles and their self-assembly into supermicelles with a narrow size distribution [J]. Angewandte Chemie: International Edition in English,2007,46:6321-6324. doi: 10.1002/anie.200700209
[9] WALTHER A, DRECHSLER M, ROSENFELDT S, et al. Self-assembly of Janus cylinders into hierarchical superstructures [J]. Journal of the American Chemical Society,2009,131:4720-4728. doi: 10.1021/ja808614q
[10] CAO W, HUANG R, QI W, et al. Self-assembly of amphiphilic Janus particles into monolayer capsules for enhanced enzyme catalysis in organic media [J]. ACS Appl Mater Interfaces,2015,7:465-473. doi: 10.1021/am5065156
[11] HERRIKHUYZEN J V, PORTALE G, GIELEN J C, et al. Disk micelles from amphiphilic Janus gold nanoparticles [J]. Chem Commun,2008,44:697-699.
[12] ANDALA D M, SHIN S H R, LEE H Y, et al. Templated synthesis of amphiphilic nanoparticles at the liquid-liquid interface [J]. ACS Nano,2012,6:1044-1050. doi: 10.1021/nn202556b
[13] RAO T, DONG X H, KATZENMEYER B C, et al. High-fidelity fabrication of Au-polymer Janus nanoparticles using a solution template approach [J]. Soft Matter,2012,8:2965-2971. doi: 10.1039/c2sm07002b
[14] SONG L, QIAO Y, LIU Z, et al. One-step synthesis of Janus hybrid nanoparticles using reverse atom transfer radical polymerization in emulsion [J]. Polymer Chemistry,2015,6:896-899. doi: 10.1039/C4PY01474J
[15] SONG L, DU Y, TENG C, et al. Facile preparation and self-aggregate of amphiphilic block nanoparticles [J]. Colloid and Polymer Science,2017,295:433-439. doi: 10.1007/s00396-017-4021-0
[16] WANG B, LI B, ZHAO B, et al. Amphiphilic Janus gold nanoparticles via combining “solid-state grafting-to” and “grafting-from” methods [J]. Journal of the American Chemical Society,2008,130(35):11594-11595. doi: 10.1021/ja804192e
[17] NIU X, RAN F, CHEN L, et al. Thermoswitchable Janus gold nanoparticles with stimuli-responsivehydrophilic polymer brushes [J]. Langmuir,2016,32(17):4297-4304. doi: 10.1021/acs.langmuir.6b00562
[18] KHAN A R, FORGO P, STINE K J, et al. Methods for selective modifications of cyclodextrins [J]. Chemical Reviews,1998,98(5):1977-1996. doi: 10.1021/cr970012b
[19] CHMURSKI K, DEFAYE J. An improved synthesis of 6-deoxyhalo cyclodextrins via halomethylenemorpholinium halides Vilsmeier-Haack type reagents [J]. Tetrahedron Letters,1997,38(42):7365-7368. doi: 10.1016/S0040-4039(97)10019-3
[20] XU J, LIU S. Synthesis of well-defined 7-arm and 21-arm poly(N-isopropylacrylamide) star polymers with β-cyclodextrin cores via click chemistry and their thermal phase transition behavior in aqueous solution [J]. Journal of Polymer Science Part A: Polymer Chemistry,2009,47(2):404-419. doi: 10.1002/pola.23157
[21] ZHANG P, CHANG L, COLEMAN A W, et al. Formation of amphiphilic cyclodextrins via hydrophobic esterification at the secondary hydroxyl face [J]. Tetrahedron Letters,1991,32(24):2769-2770. doi: 10.1016/0040-4039(91)85081-F
[22] ZHANG Z X, LIU X, XU F J, et al. Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a β-cyclodextrin core and guest-bearing PEG: Controlling thermoresponsivity through supramolecular self-assembly [J]. Macromolecules,2008,41(16):5967-5970. doi: 10.1021/ma8009646
[23] ASHTON P R, KÖNIGER R, STODDART J F, et al. Amino acid derivatives of β-cyclodextrin [J]. The Journal of Organic Chemistry,1996,61(3):903-908. doi: 10.1021/jo951396d
[24] SHI L, JING C, MA W, et al. Plasmon resonance scattering spectroscopy at the single nanoparticle level: Real-time monitoring of a click reaction [J]. Angewandte Chemie: International Edition,2013,52(23):6011-6014. doi: 10.1002/anie.201301930
[25] BRUST M, WALKER M, BETHELL D, et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system [J]. Journal of the Chemical Society: Chemical Communications,1994(7):801-802.
[26] HOSTETLER M J, WINGATE J E, ZHONG C J, et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size [J]. Langmuir,1998,14(1):17-30. doi: 10.1021/la970588w
[27] LI J, XIAO H. An efficient synthetic-route to prepare [2, 3, 6-tri-O-(2-bromo-2-methylpropionyl]-β-cyclodextrin) [J]. Tetrahedron Letters,2005,46(13):2227-2229. doi: 10.1016/j.tetlet.2005.02.027
[28] CHEN X, WU W, GUO Z, et al. Controlled insulin release from glucose-sensitive self-assembled multilayer films based on 21-arm star polymer [J]. Biomaterials,2011,32(6):1759-1766. doi: 10.1016/j.biomaterials.2010.11.002
[29] ZHANG Y, LIU H, HU J, et al. Synthesis and aggregation behavior of multi-responsive double hydrophilic ABC miktoarm star terpolymer [J]. Macromolecular Rapid Communications,2009,30(11):941-947. doi: 10.1002/marc.200800820
[30] IONITA P, CARAGHEORGHEOPOL A, GILBERT B C, et al. EPR study of a place-exchange reaction on Au nanoparticles: Two branches of a disulfide molecule do not adsorb adjacent to each other [J]. Journal of the American Chemical Society,2002,124(31):9048-9049. doi: 10.1021/ja0265456