[1] LEE D, DAVYDOV A, MONDAL B, et al. From sub-terahertz to terahertz: Challenges and design considerations[C]. Proceedings of 2020 IEEE Wireless Communications and Networking Conference Workshops, 2020: 1-8.
[2] ZHANG Y, GENG Z, NIU S, et al. Preparation and applications of low-dielectric constant poly aryl ether [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):175-185. doi: 10.1016/j.aiepr.2020.10.006
[3] LIU C, WANG L, LIU S, et al. Fabrication strategies of polymer-based electromagnetic interference shielding materials [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):149-159. doi: 10.1016/j.aiepr.2020.10.002
[4] LIN C H, CHIANG J C, WANG C S. Low dielectric thermoset: I. Synthesis and properties of novel 2, 6-dimethyl phenol-dicyclopentadiene epoxy [J]. Journal of Applied Polymer Science,2003,88(11):2607-2613. doi: 10.1002/app.11874
[5] SHIHFANG C. Copper clad laminate manufacturing [J]. TIER Industry Report - Copper Clad Laminate Manufacturing,2019:1-19.
[6] FENG S. Copper clad laminate for high frequency printed-circuit board in 5G era[D]. Yorkshire: University of York, 2018.
[7] WANG L, LIU C, SHEN S, et al. Low dielectric constant polymers for high speed communication network [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):138-148. doi: 10.1016/j.aiepr.2020.10.001
[8] SHI H, LIU X, LOU Y. Materials and micro drilling of high frequency and high speed printed circuit board: A review [J]. The International Journal of Advanced Manufacturing Technology,2018,100(1-4):827-841.
[9] BROWN G B. Validity of the clausius-mosotti formula [J]. Nature,1942,150(3814):661-662.
[10] ZONG L, LI C, ZU Y, et al. Preparation and properties of multi-fluorinated N-heterocycle-containing poly(phthalazinone ether)s with high strength and low dielectric constant [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):186-193. doi: 10.1016/j.aiepr.2020.10.003
[11] ZHAO X, LIU H. Review of polymer materials with low dielectric constant [J]. Polymer International,2010:597-606.
[12] JI Y, BAI Y, LIU X, et al. Progress of liquid crystal polyester (LCP) for 5G application [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):160-174. doi: 10.1016/j.aiepr.2020.10.005
[13] HAMERTON I, HOWLIN B J, MITCHELL A L, et al. Systematic examination of thermal, mechanical and dielectrical properties of aromatic polybenzoxazines [J]. Reactive and Functional Polymers,2012,72(10):736-744. doi: 10.1016/j.reactfunctpolym.2012.07.001
[14] KIM H J, BRUNOVSKA Z, ISHIDA H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers [J]. Polymer,1999,40(23):6565-6573. doi: 10.1016/S0032-3861(99)00046-4
[15] 张鹤, 陆馨, 姚红杰, 等. 腰果酚型聚苯并噁嗪基超疏水涂层的制备及其性能 [J]. 功能高分子学报,2019,32(1):90-95.ZHANG H, LU X, YAO HJ, et al. Preparation and properties of superhydrophobic coatings based on cardanol polybenzoxazine [J]. Journal of Functional Polymers,2019,32(1):90-95.
[16] ZHANG L, MAO J, WANG S, et al. Benzoxazine based high performance materials with low dielectric constant: A review [J]. Current Organic Chemistry,2019,23(7):809-822. doi: 10.2174/1385272823666190422130917
[17] XU Q, YIN D, ZENG M, et al. Low dielectric benzoxazine resins: Synthesis and modification [J]. Polymeric Materials Science and Engineering,2017,33(1):165-172.
[18] PATTHARASIRIWONG P, JUBSILP C, MORA P, et al. Dielectric and thermal behaviors of fluorine-containing dianhydride-modified polybenzoxazine: A molecular design flexibility [J]. Journal of Applied Polymer Science,2017,134(33):45204-45211. doi: 10.1002/app.45204
[19] VELEZ-HERRERA P, DOYAMA K, ABE H, et al. Synthesis and characterization of highly fluorinated polymer with the benzoxazine moiety in the main chain [J]. Macromolecules,2008,41(24):9704-9714. doi: 10.1021/ma801253a
[20] CHEN J, ZENG M, FENG Z, et al. Design and preparation of benzoxazine resin with high-frequency low dielectric constants and ultralow dielectric losses [J]. ACS Applied Polymer Materials,2019,1(4):625-630. doi: 10.1021/acsapm.8b00083
[21] SASI-KUMAR R, PADMANATHAN N, ALAGAR M. Design of hydrophobic polydimethylsiloxane and polybenzoxazine hybrids for interlayer low k dielectrics [J]. New Journal of Chemistry,2015,39(5):3995-4008. doi: 10.1039/C4NJ02188F
[22] LIN C H, HUANG S J, WANG P J, et al. Miscibility, microstructure, and thermal and dielectric properties of reactive blends of dicyanate ester and diamine-based benzoxazine [J]. Macromolecules,2012,45(18):7461-7466. doi: 10.1021/ma3009433
[23] ZENG M, PANG T, CHEN J, et al. Facile preparation of the novel castor oil-based benzoxazine-urethane copolymer with improved high-frequency dielectric properties [J]. Journal of Materials Science: Materials in Electronics,2018,29(7):5391-5400. doi: 10.1007/s10854-017-8505-y
[24] THIRUKUMARAN P, PARVEEN A S, SAROJADEVI M. Synthesis of eugenol-based polybenzoxazine-POSS nanocomposites for low dielectric applications [J]. Polymer Composites,2015,36(11):1973-1982. doi: 10.1002/pc.23107
[25] SASI-KUMAR R, ALAGAR M. Dielectric and thermal behaviors of POSS reinforced polyurethane based polybenzoxazine nanocomposites [J]. RSC Advances,2015,5(42):33008-33015. doi: 10.1039/C5RA04328J
[26] VENGATESAN M R, DEVARAJU S, DINAKARAN K, et al. SBA-15 filled polybenzoxazine nanocomposites for low-k dielectric applications [J]. Journal of Materials Chemistry,2012,22(15):7559-7566. doi: 10.1039/c2jm16566j
[27] SELVARAJ V, JAYANTHI K P, LAKSHMIKANDHAN T, et al. Development of a polybenzoxazine/TSBA-15 composite from the renewable resource cardanol for low-k applications [J]. RSC Advances,2015,5(60):48898-48907. doi: 10.1039/C5RA07480K
[28] FINK J K, CYANATE ESTER RESINS. In Reactive Polymers Fundamentals and Applications, 2013: 251-268.
[29] LI X, GU Y. The co-curing process of a benzoxazine-cyanate system and the thermal properties of the copolymers [J]. Polymer Chemistry,2011,2(12):2778-2781. doi: 10.1039/c1py00379h
[30] MA P, DAI C, JIANG S. Thioetherimide-modified cyanate ester resin with better molding performance for glass fiber reinforced composites [J]. Polymers (Basel),2019,11(9):1-10.
[31] WANG X, JIN J, SONG M. Cyanate ester resin/graphene nanocomposite: Curing dynamics and network formation [J]. European Polymer Journal,2012,48(6):1034-1041. doi: 10.1016/j.eurpolymj.2012.03.012
[32] YUAN L, LIANG G, GU A. The thermal and dielectric properties of high performance cyanate ester resins/microcapsules composites [J]. Polymer Degradation and Stability,2011,96(1):84-90. doi: 10.1016/j.polymdegradstab.2010.10.013
[33] ZHAO L, YUAN L, LIANG G, et al. Novel tough and thermally stable cyanate ester resins with high flame retardancy, low dielectric loss and constant based on a phenolphthalein type polyarylether sulfone [J]. RSC Advances,2015,5(73):58989-59002. doi: 10.1039/C5RA10670B
[34] TANG Y, YUAN L, LIANG G, et al. High performance low-k cyanate ester resins with a thermally stable cyclodextrin microsphere [J]. RSC Adv,2014,4(31):16136-16145. doi: 10.1039/C4RA00750F
[35] XU M, CHEN S, LI X, et al. Fabrication of phthalonitrile-based copper-clad laminates and their application properties: Thermo-stability and dielectric properties [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):194-201. doi: 10.1016/j.aiepr.2020.10.004
[36] ZHUO D, GU A, LIANG G, et al. Preparation and properties of hollow silica tubes/cyanate ester hybrids for high-frequency copper-clad laminates [J]. Journal of Materials Science,2010,46(6):1571-1580.
[37] JIAO J, ZHAO L, XIA Y, et al. Toughening of cyanate resin with low dielectric constant by glycidyl polyhedral oligomeric silsesquioxane [J]. High Performance Polymers,2016,29(4):458-466.
[38] WANG H, YUAN L, LIANG G, et al. Tough and thermally resistant cyanate ester resin with significantly reduced curing temperature and low dielectric loss based on developing an efficient graphene oxide/Mn ion metal-organic framework hybrid [J]. RSC Advances,2016,6(4):3290-3300. doi: 10.1039/C5RA21765B
[39] GU X, ZHANG Z, YUAN L, et al. Developing high performance cyanate ester resin with significantly reduced postcuring temperature while improved toughness, rigidity, thermal and dielectric properties based on manganese-Schiff base hybridized graphene oxide [J]. Chemical Engineering Journal,2016,298:214-224. doi: 10.1016/j.cej.2016.04.031
[40] RIDDLE B, BAKER-JARVIS J, KRUPKA J. Complex permittivity measurements of common plastics over variable temperatures [J]. IEEE Transactions on Microwave Theory and Techniques,2003,51(3):727-733. doi: 10.1109/TMTT.2003.808730
[41] HUANG X, JIANG P, TANAKA T. A review of dielectric polymer composites with high thermal conductivity [J]. IEEE Electrical Insulation Magazine,2011,27(4):8-16. doi: 10.1109/MEI.2011.5954064
[42] HAHN T A. Thermal expansion of copper from 20 to 800 K-standard reference material 736 [J]. Journal of Applied Physics,1970,41(13):5096-5101. doi: 10.1063/1.1658614
[43] XI Z, GHITA O R, EVANS K E. Effect of recyclate PTFE/GF laminate incorporation on the dielectric and mechanical properties of PTFE/GF composites using a novel manufacturing process [J]. Journal of Applied Polymer Science,2011,122(4):2467-2477. doi: 10.1002/app.34350
[44] ZHANG J, CUI C Q, LIM T B, et al. Surface graft copolymerization enhanced lamination of poly(tetrafluoroethylene) film to copper and epoxy-based print circuit board [J]. Journal of Electronic Packaging,1999,121(4):291-296. doi: 10.1115/1.2793855
[45] TZENG G S, CHEN H J, WANG Y Y, et al. The effects of roughening on teflon surfaces [J]. Surface and Coatings Technology,1997,89(1-2):108-113. doi: 10.1016/S0257-8972(96)02916-7
[46] 何欣钟, 李荣, 高乾宏, 等. 低温等离子体接枝改性聚四氟乙烯薄膜表面无钯化学镀铜 [J]. 辐射研究与辐射工艺学报,2016,34(4):34-41.HE XZ, LI R, GAO QH, et al. Low temperature plasma graft polymerization of acrylic acid on polytetrafluoroethylene film for Pd-free electroless copper deposition [J]. Journal of Radiation Research and Radiation Processing,2016,34(4):34-41.
[47] VALERIO J K C, NAKAJIMA H, VASQUEZ M R. Grafting of acrylic acid onto microwave plasma-treated polytetrafluoroethylene (PTFE) substrates [J]. Japanese Journal of Applied Physics,2019,58(SA):1-7.
[48] ZHOU G, GOU X, JIN X, et al. Low fractal dimension modified drilling-hole wall for PTFE high-frequency board copper plating with plasma treatment [J]. Journal of Applied Polymer Science,2019,136(42):48052-48061. doi: 10.1002/app.48052
[49] ZIMMERMANN-PTACEK J, MUGGLI M, WILDHACK S, et al. Thermal, dielectric, and mechanical properties of h-BN-filled PTFE composites [J]. Journal of Applied Polymer Science,2018,135(44):46859-46867. doi: 10.1002/app.46859
[50] CHEN P, KOU K, ZHANG Y, et al. Investigation of the dielectric and thermal conductive properties of core-shell structured HGM@hBN/PTFE composites [J]. Materials Science and Engineering: B,2018,238-239:61-70. doi: 10.1016/j.mseb.2018.12.015
[51] 兰中旭, 韦嘉, 俞燕蕾. 耐高温无色透明聚酰亚胺的研究进展 [J]. 功能高分子学报,2020,33(4):320-332.LAN ZX, WEI J, YU YL. Recent progress in colorless and transparent polyimide with high thermal stability [J]. Journal of Functional Polymers,2020,33(4):320-332.
[52] PROLONGO S G, CABANELAS J C, FINE T, et al. Poly(phenylene ether)/epoxy thermoset blends based on anionic polymerization of epoxy monomer [J]. Journal of Applied Polymer Science,2004,93(6):2678-2687. doi: 10.1002/app.20836
[53] ZHAO S, ZHU R. Flexible Bimodal sensor for simultaneous and independent perceiving of pressure and temperature stimuli [J]. Advanced Materials Technologies,2017,2(11):1700183. doi: 10.1002/admt.201700183
[54] ISHII J, YOKOYAMA N, HASEGAWA M. Solution-processable CF3-substituted ductile polyimides with low coefficients of thermal expansion as novel coating-type protective layers in flexible printed circuit boards [J]. Progress in Organic Coatings,2016,99:125-133. doi: 10.1016/j.porgcoat.2016.05.008
[55] KALTENBRUNNER M, SEKITANI T, REEDER J, et al. An ultra-lightweight design for imperceptible plastic electronics [J]. Nature,2013,499(7459):458-463. doi: 10.1038/nature12314
[56] WANG X, DAI Y, WANG W, et al. Fluorographene with high fluorine/carbon ratio: A nanofiller for preparing low-k polyimide hybrid films [J]. ACS Applied Materials & Interfaces,2014,6(18):16182-16188.
[57] YIN X, FENG Y, ZHAO Q, et al. Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant [J]. Journal of Materials Chemistry C,2018,6(24):6378-6384. doi: 10.1039/C8TC00998H
[58] CHEN W, ZHOU Z, YANG T, et al. Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety [J]. Reactive and Functional Polymers,2016,108:71-77. doi: 10.1016/j.reactfunctpolym.2016.04.011
[59] BEI R, QIAN C, ZHANG Y, et al. Intrinsic low dielectric constant polyimides: Relationship between molecular structure and dielectric properties [J]. Journal of Materials Chemistry C,2017,5(48):12807-12815. doi: 10.1039/C7TC04220E
[60] QIAN C, FAN Z G, ZHENG W W, et al. A facile strategy for non-fluorinated intrinsic low-k and low-loss dielectric polymers: Valid exploitation of secondary relaxation behaviors [J]. Chinese Journal of Polymer Science,2019,38(3):213-219.
[61] SHI C, LIU S, LI Y, et al. Imparting low dielectric constant and high modulus to polyimides via synergy between coupled silsesquioxanes and crown ethers [J]. Composites Science and Technology,2017,142:117-123. doi: 10.1016/j.compscitech.2017.02.002
[62] CHEN Z, ZHU D, TONG F, et al. Low dielectric constant polyimide hybrid films prepared by in situ blow-balloon method [J]. ACS Applied Polymer Materials,2019,1(8):2189-2196. doi: 10.1021/acsapm.9b00448
[63] MA Y, XU L, HE Z, et al. Tunable dielectric and other properties in high-performance sandwich-type polyimide films achieved by adjusting the porous structure [J]. Journal of Materials Chemistry C,2019,7(24):7360-7370. doi: 10.1039/C9TC02017A
[64] HAY A S. Poly(phenylene oxides)s and poly(arylene ether)s derived from 2, 6-diarylphenols [J]. Progress in Polymer Science,1999,24(1):45-80. doi: 10.1016/S0079-6700(98)00016-1
[65] NUNOSHIGE J, AKAHOSHI H, SHIBASAKI Y, et al. Efficient oxidative coupling polymerization for synthesis of thermosetting poly(phenylene ether) copolymer with a low dielectric loss [J]. Journal of Polymer Science Part A: Polymer Chemistry,2008,46(15):5278-5282. doi: 10.1002/pola.22768
[66] NUNOSHIGE J, AKAHOSHI H, SHIBASAKI Y, et al. Low dielectric loss copolymer obtained from 2, 6-dimethylphenol and 2-allyl-6-methylphenol via Cu-catalyzed oxidative coupling polymerization [J]. Chemistry Letters,2007,36(2):238-239. doi: 10.1246/cl.2007.238
[67] WANG Y, CHENG S, LI W, et al. Synthesis and properties of thermosetting modified polyphenylene ether [J]. Polymer Bulletin,2007,59(3):391-401. doi: 10.1007/s00289-007-0775-8
[68] SHEN D, YUAN L, LIANG G, et al. Thermally resistant photocrosslinked damping poly(phenylene oxide)-fluorosilicone rubber films with broad and high effective damping temperatures [J]. Journal of Applied Polymer Science,2019,136(12):47231-47238. doi: 10.1002/app.47231
[69] WANG Y, TAO Y, ZHOU J, et al. Biobased anethole-functionalized poly(phenylene oxides): New low dielectric materials with high Tg and good dimensional stability [J]. ACS Sustainable Chemistry & Engineering,2018,6(7):9277-9282.
[70] CHEN W, YANG H, ZOU H, et al. Compatibilized the thermosetting blend of epoxy and redistributed low molecular weight poly(phenylene oxide) with triallylisocyanurate [J]. Journal of Applied Polymer Science,2016,133(20):43293-43298.
[71] WENG L, ZHANG Y, ZHANG X, et al. Synthesis and properties of cyanate mixed resin systems modified by polyphenylene oxide for production of high-frequency copper clad laminates [J]. Journal of Materials Science: Materials in Electronics,2017,29(4):2831-2840.