[1] LI M. YU J. LI Y. et al. Highly enantioselective carbene insertion into N–H bonds ofaliphatic amines [J]. Science, 2019, 366(6468): 990–994.
[2] LIU M, ZHANG L, WANG T. Supramolecular chirality in self-assembled systems [J]. Chemical Reviews,2015,115(15):7304-7397. doi: 10.1021/cr500671p
[3] HE C, YANG G, KUAI Y, et al. Dissymmetry enhancement in enantioselective synthesis of helical polydiacetylene by application of superchiral light [J]. Nature Communications,2018,9:5117. doi: 10.1038/s41467-018-07533-y
[4] 殷露, 缪腾飞, 程笑笑, 等. 光诱导非手性聚合物的手性研究进展 [J]. 功能高分子学报,2018,31(5):387-401.
[5] FAIGL F, FOGASSY E, NOGRADI M, et al. Separation of non-racemic mixtures of enantiomers: An essential part of optical resolution [J]. Organic & Biomolecular Chemistry,2010,8(5):947-959.
[6] YANG B, WANG Y, CUN H, et al. Direct observation of enantiospecific substitution in a two-dimensional chiral phase transition [J]. Journal of the American Chemical Society,2010,132(30):10440-10444. doi: 10.1021/ja102989y
[7] ODA R, HUC I, SCHMUTZ M, et al. Tuning bilayer twist using chiral counterions [J]. Nature,1999,399(6736):566-569. doi: 10.1038/21154
[8] BERTHIER D, BUFFETEAU T, LEGER J M, et al. From chiral counterions to twisted membranes [J]. Journal of the American Chemical Society,2002,124(45):13486-13494. doi: 10.1021/ja027660j
[9] BRIZARD A, AIME C, LABROT T, et al. Counterion, temperature, and time modulation of nanometric chiral ribbons from gemini-tartrate amphiphiles [J]. Journal of the American Chemical Society,2007,129(12):3754-3762. doi: 10.1021/ja0682172
[10] ZHU X, LI Y, DUAN P, et al. Self-assembled ultralong chiral nanotubes and tuning of their chirality through the mixing of enantiomeric components [J]. Chemistry: A European Journal,2010,16(27):8034-8040. doi: 10.1002/chem.201000595
[11] ZHU X, JIANG Y, YANG D, et al. Homochiral nanotubes from heterochiral lipid mixtures: A shorter alkyl chain dominated chiral self-assembly [J]. Chemical Science,2019,10(13):3873-3880. doi: 10.1039/C9SC00215D
[12] SHEN Z, WANG T, LIU M. Tuning the gelation ability of racemic mixture by melamine: Enhanced mechanical rigidity and tunable nanoscale chirality [J]. Langmuir,2014,30(34):10772-10778.
[13] CAO H, ZHU X, LIU M. Self-assembly of racemic alanine derivatives: Unexpected chiral twist and enhanced capacity for the discrimination of chiral species [J]. Angewandte Chemie: International Edition,2013,52(15):4122-4126. doi: 10.1002/anie.201300444
[14] KULKARNI C, BERROCAL J A, LUTZ M, et al. Directing the solid-state organization of racemates via structural mutation and solution-state assembly processes [J]. Journal of the American Chemical Society,2019,141(15):6302-6309. doi: 10.1021/jacs.9b00452
[15] TOMASSON D A, GHOSH D, KRZISNIK Z, et al. Enhanced mechanical and thermal strength in mixed-enantiomers-based supramolecular gel [J]. Langmuir,2018,34(43):12957-12967. doi: 10.1021/acs.langmuir.8b02729
[16] GHOSH G, PAUL M, SAKURAI T, et al. Supramolecular chirality issues in unorthodox naphthalene diimide gelators [J]. Chemistry: A European Journal,2018,24(8):1938-1946. doi: 10.1002/chem.201704825
[17] CHEN M, LI J, JIAO X, et al. Enantiopure versus racemic naphthalene diimide-based n-type organic semiconductors: Effect on charge transport [J]. Journal of Materials Chemistry C,2019,7(9):2659-2665. doi: 10.1039/C8TC06273K
[18] EDWARDS W, SMITH D K. Enantioselective component selection in multicomponent supramolecular gels [J]. Journal of the American Chemical Society,2014,136(3):1116-1124. doi: 10.1021/ja411724r
[19] EDWARDS W, SMITH D K. Chiral assembly preferences and directing effects in supramolecular two-component organogels [J]. Gels (Basel, Switzerland),2018,4(2):31. doi: 10.3390/gels4020031
[20] VALERA J S, GOMEZ R, SANCHEZ L. Kinetic traps to activate stereomutation in supramolecular polymers [J]. Angewandte Chemie: International Edition,2019,58(2):510-514. doi: 10.1002/anie.201809272
[21] ZHANG W, JIN W, FUKUSHIMA T, et al. Helix sense-selective supramolecular polymerization seeded by a one-handed helical polymeric assembly [J]. Journal of the American Chemical Society,2015,137(43):13792-13795. doi: 10.1021/jacs.5b09878
[22] SATO K, ITOH Y, AIDA T. Homochiral supramolecular polymerization of bowl-shaped chiral macrocycles in solution [J]. Chemical Science,2014,5(1):136-140. doi: 10.1039/C3SC52449C
[23] HU K, LIU Y, XIONG W, et al. Fabrication of single-handed nanocoils with controlled length via a living supramolecular self-assembly [J]. Chemistry of Materials,2019,31(4):1403-1407. doi: 10.1021/acs.chemmater.8b04923
[24] MA X, ZHANG Y, ZHANG Y, et al. Fabrication of chiral-selective nanotubular heterojunctions through living supramolecular polymerization [J]. Angewandte Chemie: International Edition,2016,55(33):9539-9543. doi: 10.1002/anie.201602819
[25] KUMAR J, TSUMATORI H, YUASA J, et al. Self-discriminating termination of chiral supramolecular polymerization: Tuning the length of nanofibers [J]. Angewandte Chemie: International Edition,2015,54(20):5943-5947. doi: 10.1002/anie.201500292
[26] SARKAR A, DHIMAN S, CHALISHAZAR A, et al. Visualization of stereoselective supramolecular polymers by chirality-controlled energy transfer [J]. Angewandte Chemie: International Edition,2017,56(44):13767-13771. doi: 10.1002/anie.201708267
[27] SETHY R, METIVIER R, BROSSEAU A, et al. Impact of optical purity on the light harvesting property in supramolecular nanofibers [J]. Journal of Physical Chemistry Letters,2018,9(16):4516-4521. doi: 10.1021/acs.jpclett.8b02015
[28] SETHY R, KUMAR J, METIVIER R, et al. Enantioselective light harvesting with perylenediimide guests on self-assembled chiral naphthalenediimide nanofibers [J]. Angewandte Chemie: International Edition,2017,56(47):15053-15057. doi: 10.1002/anie.201707160