[1] ZELIKIN A N, EHRHARDT C, HEALY A M. Materials and methods for delivery of biological drugs [J]. Nat Chem,2016,8(11):997-1007. doi: 10.1038/nchem.2629
[2] KO J H, MAYNARD H D. A guide to maximizing the therapeutic potential of protein-polymer conjugates by rational design [J]. Chem Soc Rev,2018,47(24):8998-9014. doi: 10.1039/C8CS00606G
[3] HARRIS J M, CHESS R B. Effect of pegylation on pharmaceuticals [J]. Nat Rev Drug Discov,2003,2(3):214-221. doi: 10.1038/nrd1033
[4] ZAMAN R, ISLAM R A, IBNAT N, et al. Current strategies in extending half-lives of therapeutic proteins [J]. J Control Release,2019,301:176-189. doi: 10.1016/j.jconrel.2019.02.016
[5] ZHANG P, SUN F, LIU S, et al. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation [J]. J Control Release,2016,244:184-193. doi: 10.1016/j.jconrel.2016.06.040
[6] QI Y, CHILKOTI A. Protein-polymer conjugation-moving beyond PEGylation [J]. Curr Opin Chem Biol,2015,28:181-193. doi: 10.1016/j.cbpa.2015.08.009
[7] 张冲, 吕华. 蛋白质-聚氨基酸偶联物的高效合成与应用 [J]. 高分子学报,2018(1):21-31. doi: 10.11777/j.issn1000-3304.2018.17204ZHANG C, LYU H. Efficient synthesis and application of protein-poly(α-amino acid) conjugates [J]. Acta Polymerica Sinica,2018(1):21-31. doi: 10.11777/j.issn1000-3304.2018.17204
[8] 闫树鹏, 张冲, 吕华. 两性离子聚合物的研究进展 [J]. 功能高分子学报,2020,33(4):1-14.YAN S P, ZHANG C, LYU H. Advances in zwitterionic polymers [J]. Journal of Functional Polymers,2020,33(4):1-14.
[9] WHITE A D, NOWINSKI A K, HUANG W J, et al. Decoding nonspecific interactions from nature [J]. Chem Sci,2012,3(12):3488-3494. doi: 10.1039/c2sc21135a
[10] KEEFE A J, CALDWELL K B, NOWINSKI A K, et al. Screening nonspecific interactions of peptides without background interference [J]. Biomaterials,2013,34(8):1871-1877. doi: 10.1016/j.biomaterials.2012.11.014
[11] LIU E J, SINCLAIR A, KEEFE A J, et al. EKylation: Addition of an alternating-charge peptide stabilizes proteins [J]. Biomacromolecules,2015,16(10):3357-3361. doi: 10.1021/acs.biomac.5b01031
[12] LIU E J, JIANG S. Expressing a monomeric organophosphate hydrolase as an EK fusion protein [J]. Bioconjug Chem,2018,29(11):3686-3690. doi: 10.1021/acs.bioconjchem.8b00607
[13] BANSKOTA S, YOUSEFPOUR P, KIRMANI N, et al. Long circulating genetically encoded intrinsically disordered zwitterionic polypeptides for drug delivery [J]. Biomaterials,2019,192:475-485. doi: 10.1016/j.biomaterials.2018.11.012
[14] SHAO Q, HE Y, WHITE A D, et al. Different effects of zwitterion and ethylene glycol on proteins [J]. J Chem Phys,2012,136(22):225101.
[15] SETTANNI G, ZHOU J, SUO T, et al. Protein corona composition of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface [J]. Nanoscale,2017,9(6):2138-2144. doi: 10.1039/C6NR07022A
[16] GODDARD T D, HUANG C C, MENG E C, et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis [J]. Protein Sci,2018,27(1):14-25. doi: 10.1002/pro.3235
[17] HAN W, WAN C K, JIANG F, et al. PACE force field for protein simulations. 1. Full parameterization of version 1 and verification [J]. J Chem Theory Comput,2010,6(11):3373-3389. doi: 10.1021/ct1003127
[18] HAN W, WAN C K, WU Y D. PACE force field for protein simulations. 2. Folding simulations of peptides [J]. J Chem Theory Comput,2010,6(11):3390-3402. doi: 10.1021/ct100313a
[19] XIONG Q, JIANG Y, CAI X, et al. Conformation dependence of diphenylalanine self-assembly structures and dynamics: Insights from hybrid-resolution simulations [J]. ACS Nano,2019,13(4):4455-4468. doi: 10.1021/acsnano.8b09741
[20] ABRAHAM M J, MURTOLA T, SCHULZ R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J]. SoftwareX,2015,1-2:19-25. doi: 10.1016/j.softx.2015.06.001
[21] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14 (1): 33 (8), 27-28.
[22] DELANO W L. The PyMOL Molecular Graphics System; DeLano Scientific: San Carlos, CA, USA, 2002.
[23] MANANDHAR B, AHN J M. Glucagon-like peptide-1 (GLP-1) analogs: Recent advances, new possibilities, and therapeutic implications [J]. J Med Chem,2015,58(3):1020-1037. doi: 10.1021/jm500810s
[24] UNDERWOOD C R, GARIBAY P, KNUDSEN L B, et al. Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor [J]. J Biol Chem,2010,285(1):723-730. doi: 10.1074/jbc.M109.033829
[25] THORNTON K, GORENSTEIN D G. Structure of glucagon-like peptide (7-36) amide in a dodecylphosphocholine micelle as determined by 2D NMR [J]. Biochemistry,1994,33(12):3532-3539. doi: 10.1021/bi00178a009
[26] CHANG X, KELLER D, BJØRN S, et al. Structure and folding of glucagon-like peptide-1-(7-36)-amide in aqueous trifluoroethanol studied by NMR spectroscopy [J]. Magnetic Resonance in Chemistry,2001,39(8):477-483. doi: 10.1002/mrc.880