[1] ESCHBACH L. Nonresorbable polymers in bone surgery [J]. Injury,2000,31(S4):22-27.
[2] STEVEN M, JOHN N. PEEK biomaterials in trauma, orthopedic, and spinal implants [J]. Biomaterials,2007,28(32):4845-4869. doi: 10.1016/j.biomaterials.2007.07.013
[3] WENZ L M, MERRITT K, BROWN S A, et al. In vitro biocompatibility of polyetheretherketone and polysulfone composites [J]. Journal of Biomedical Materials Research Part A,2010,24(2):207-215.
[4] KATZER A, MARQUARDT H, WESTENDORF J, et al. Polyetheretherketone—cytotoxicity and mutagenicity in vitro [J]. Biomaterials,2002,23(8):1749-1759. doi: 10.1016/S0142-9612(01)00300-3
[5] GODARA A, RAABE D, GREEN S. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications [J]. Acta Biomaterialia,2007,3(2):209-220. doi: 10.1016/j.actbio.2006.11.005
[6] WALSH W R, BERTOLLO N, CHRISTOU C, et al. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface [J]. Spine Journal Official Journal of the North American Spine Society,2015,15(5):1041-1049. doi: 10.1016/j.spinee.2014.12.018
[7] WILLIAMS D. Polyetheretherketone for long-term implantable devices [J]. Medical Device Technology,2008,19(1):18348432.
[8] STEVEN M K. PEEK Biomaterials Handbook[M]. Holland: Elsevier, 2012.
[9] HAN X, YANG D, YANG C, et al. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications [J]. Journal of Clinical Medicine,2019,8(2):240. doi: 10.3390/jcm8020240
[10] HA S W, KIRCH M, BIRCHLER F, et al. Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation [J]. Journal of Materials Science: Materials in Medicine,1997,8(11):683-690. doi: 10.1023/A:1018535923173
[11] MO S, MEHRJOU B, TANG K, et al. Dimensional-dependent antibacterial behavior on bioactive micro/nano polyetheretherketone (PEEK) arrays [J]. Chemical Engineering Journal,2019,392:123736.
[12] ZHANG C, WANG L, KANG J, et al. Bionic design and verification of 3D printed PEEK costal cartilage prosthesis [J]. Journal of the Mechanical Behavior of Biomedical Materials,2019,103:103561.
[13] REHMAN M A U, BASTAN F E, NAWAZ A, et al. Electrophoretic deposition of PEEK/bioactive glass composite coatings on stainless steel for orthopedic applications: An optimization for in vitro bioactivity and adhesion strength [J]. International Journal of Advanced Manufacturing Technology,2020,108(5-6):1849-1862. doi: 10.1007/s00170-020-05456-x
[14] WANG S, DUAN C, YANG W, et al. Correction: Two-dimensional nanocoating-enabled orthopedic implants for bimodal therapeutic applications [J]. Nanoscale,2020,12:11936-11946. doi: 10.1039/D0NR02327B
[15] LAMBOTTE A. Technique et indication des protheses dans le traitement des fractures [J]. Journal of Orthopaedec Science,1909,17:321. doi: 10.1007/s00776-005-0984-7
[16] SHERMAN W. Vanadium steel bone plates and screws [J]. Surg Gynecol Obstet,1912,14:629-634.
[17] RANAUD M, FARKASCI S, PONS C, et al. A new rat model for translational research in bone regeneration [J]. Tissue Engineering Part C Methods,2016,22(2):125-131. doi: 10.1089/ten.tec.2015.0187
[18] VON W C, VAIRAKTARIS E, POHLE D, et al. Effects of bioactive glass and β-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro [J]. Biomed Mater Res A,2008,87(4):896-902.
[19] CONVERSE G L, CONRAD T L, MERRILL C H, et al. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds [J]. Acta Biomater,2010,6(3):856-863. doi: 10.1016/j.actbio.2009.08.004
[20] STANLEY A, BROWN R S H, JEFFREY J M. Characterization of short-fibre reinforced thermoplastics for fracture fixation devices [J]. Biomaterials,1990,11(8):541-547. doi: 10.1016/0142-9612(90)90075-2
[21] DAVIM J P, MARQUES N, BAPTISTA A M. Effect of carbon fibre reinforcement in the frictional behaviour of PEEK in a water lubricated environment [J]. Wear,2001,251(1-12):1100-1104. doi: 10.1016/S0043-1648(01)00741-4
[22] ZHANG Z, BREIDT C, CHANG L, et al. Wear of PEEK composites related to their mechanical performances [J]. Tribol Int,2004,37(3):271-277. doi: 10.1016/j.triboint.2003.09.005
[23] SHARMA M, BIJWA J, MADER E, et al. Strengthening of CF/PEEK interface to improve the tribological performance in low amplitude oscillating wear mode [J]. Wear,2013,301(1-2):735-739. doi: 10.1016/j.wear.2012.12.006
[24] WANG Z, GAO D. Friction and wear properties of stainless-steel sliding against polyetheretherketone and carbon-fiber-reinforced polyetheretherketone under natural seawater lubrication [J]. Materials & Design,2014,53:881-887.
[25] 宗倩颖, 叶霖, 张爱英, 等. 聚醚醚酮及其复合材料在生物医用领域的应用 [J]. 合成树脂及塑料,2016,33(3):93-96. doi: 10.3969/j.issn.1002-1396.2016.03.022ZONG Q Y, YE L, ZHANG A Y, et al. Applications of polyether ether ketone and its composites in biomedical field [J]. China Synthetic Resin and Plastics,2016,33(3):93-96. doi: 10.3969/j.issn.1002-1396.2016.03.022
[26] SENEGAS J. Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: The Wallis system [J]. Eur Spine J,2002,11:S164-S169. doi: 10.1007/s00586-002-0423-9
[27] CHO D, LIAU W, LEE W, et al. Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease [J]. Neurosurgery,2002,51(6):1343-1350. doi: 10.1097/00006123-200212000-00003
[28] MASTRONARDI L, DUCATI A, FERRANTE L. Anterior cervical fusion with polyetheretherketone (PEEK) cages in the treatment of degenerative disc disease: Preliminary observations in 36 consecutive cases with a minimum 12-month follow-up [J]. Acta Neurochirurgica,2006,148(3):307-312. doi: 10.1007/s00701-005-0657-5
[29] TOTH J M, WANG M, ESTES B T, et al. Polyetheretherketone as a biomaterial for spinal applications [J]. Biomaterials,2006,27(3):324-334. doi: 10.1016/j.biomaterials.2005.07.011
[30] 甘抗, 郭晶, 刘红. 聚醚醚酮口腔生物材料的研究进展 [J]. 口腔颌面修复学杂志,2014,15(3):172-175. doi: 10.3969/j.issn.1009-3761.2014.03.012GAN K, GUO J, LIU H. Research progress of polyether ether ketone oral biomaterials [J]. Chinese Journal of Prosthodontics,2014,15(3):172-175. doi: 10.3969/j.issn.1009-3761.2014.03.012
[31] STAWARCZYK B, BEUER F, WIMMER T, et al. Polyetherether ketone: A suitable material for fixed dental prostheses [J]. J Biomed Mater Res B Appl Biomater,2013,101(7):1209-1216.
[32] BEHR M, ROSENTRITT M, LANG R, et al. Glass fiber-reinforce-dabutments for dental implants: A pilot study [J]. Clin Oral Implants Res,2001,12(2):174-178. doi: 10.1034/j.1600-0501.2001.012002174.x
[33] LEE W T, KOAK J Y, LIM Y J, et al. Stress shielding and fatiguelimits of poly-ether-ether-ketone dental implants [J]. J Biomed Mater Res B Appl Biomater,2012,100(4):1044-1052.
[34] 何舒, 张翼飞, 周平, 等. 聚醚醚酮基纳米复合材料表面口腔微生物黏附与成膜的实验研究 [J]. 生物骨科材料与临床研究,2013,10(5):5-8. doi: 10.3969/j.issn.1672-5972.2013.05.002HE S, ZHANG J F, ZHOU P, et al. Research of oral microbial adhesion and biofilm formation on the surface of poly (ether-ether-ketone) based nanocomposites [J]. Orthopaedic Biomechanics Materials and Clinical Study,2013,10(5):5-8. doi: 10.3969/j.issn.1672-5972.2013.05.002
[35] COOK S D, RUST-DAWICKI A M. Preliminary evaluation of titanium-coated PEEK dental implants [J]. Journal of Oral Implantology,1995,21(3):176-181.
[36] HAN C M, LEE E J, KIM H E, et al. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties [J]. Biomaterials,2010,31(13):3465-3470. doi: 10.1016/j.biomaterials.2009.12.030
[37] SCHWITALLA A, MULLER, WOLF-DIETER. PEEK dental implants: A review of the literature [J]. Journal of Oral Implantology,2013,39(6):743-749. doi: 10.1563/AAID-JOI-D-11-00002
[38] BOGNA S, HADELINDE T, MALIS E. Effect of different surface pretreatments and adhesives on the load-bearing capacity of veneered 3-unit PEEK FDPs [J]. The Journal of Prosthetic Dentistry,2015,114(5):666-673. doi: 10.1016/j.prosdent.2015.06.006
[39] 宋乐. 不同材料行颅骨缺损修补90例临床观察 [J]. 中国实用神经疾病杂志,2006,9(2):39-41. doi: 10.3969/j.issn.1673-5110.2006.02.028SONG L. Clinical observation of 90 cases of cranial defect repair with different materials [J]. Chinese Journal of Practical Nervous Diseases,2006,9(2):39-41. doi: 10.3969/j.issn.1673-5110.2006.02.028
[40] 王国良, 公方和, 刘金龙, 等. 聚醚醚酮在颅骨缺损个体化重建手术中的应用 [J]. 中国微侵袭神经外科杂志,2013,18(10):456-458. doi: 10.11850/j.issn.1009-122X.2013.10.010WANG G L, GONG F H, LIU J L, et al. Individualized reconstructive surgery for skull defects with poly-ether-ether-ketone materials [J]. Chinese Journal of Minimally Invasive Neurosurgery,2013,18(10):456-458. doi: 10.11850/j.issn.1009-122X.2013.10.010
[41] MICHAEL M K, KOFI D O, PATRICK J B. Use of customized polyetheretherketone (PEEK) implants in the reconstruction of complex maxillofacial defects [J]. Archives of Facial Plastic Surgery,2009,11(1):53-57. doi: 10.1001/archfaci.11.1.53
[42] MARBACHER S, ANDEREGGEN L, FANDINO J, et al. Combined bone and soft-tissue augmentation surgery in temporo-orbital contour reconstruction [J]. Craniofac Surg,2011,22(1):266-268. doi: 10.1097/SCS.0b013e3181f7b781
[43] JALBERT F, BOETTO S, NADON F, et al. One-step primary reconstruction for complex craniofacial resection with PEEK custom-made implants [J]. Craniomaxillofac Surg,2014,42(2):141-148. doi: 10.1016/j.jcms.2013.04.001
[44] GERBINO G, ZAVATTERO E, ZENGA F, et al. Primary and secondary reconstruction of complex craniofacial defects using polyetheretherketone custom-made implants [J]. Craniomaxillofac Surg,2015,43(8):1356-1363. doi: 10.1016/j.jcms.2015.06.043
[45] PANAYOTOV I V, ORTI V, CUISINIER F, et al. Polyetheretherketone (PEEK) for medical applications [J]. Mater Sci: Mater Med,2016,27(7):118. doi: 10.1007/s10856-016-5731-4
[46] JOSEPH M, THIRAY M, ZAKIER H, et al. Case report: Destructive neuroendocrine cranial tumour and the role of pre-fashioned polyetheretherketone (PEEK)[J]. Cranioplasty. 2012, 5(1): 7-10.
[47] CAMARINI E T, TOMEH J K, DIAS R R, et al. Reconstruction of frontal bone using specific implant polyether-ether-ketone [J]. Craniofac Surg,2011,22(6):2205-2207. doi: 10.1097/SCS.0b013e3182326f2c
[48] STEINBERG E L, RATH E, SHLAIFER A, et al. Carbon fiber reinforced PEEK optima: A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants [J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,17:221-228. doi: 10.1016/j.jmbbm.2012.09.013
[49] GRAPOW M T, MELLY L F, ECKSTEIN F S, et al. A new cable-tie based sternal closure system: Description of the device, technique of implantation and first clinical evaluation [J]. Journal of Cardiothoracic Surgery,2012,7(1):59. doi: 10.1186/1749-8090-7-59
[50] BINYAMIN G, SHAFI B M, MERY C M. Biomaterials: A primer for surgeons [J]. Seminars in Pediatric Surgery,2006,15(4):276-283. doi: 10.1053/j.sempedsurg.2006.07.007
[51] DA C, MARIANA M, JOANA P J, et al. Hard and soft tissue cell behavior on PEEK, Zirconia, and Titanium implant materials [J]. The International Journal of Oral & Maxillofacial Implants,2019,34(1):39-46.
[52] RIVARD C H, RHALMI S, COILLARD C. In vivo biocompatibility testing of PEEK polymer for a spinal implant system: A study in rabbits [J]. Journal of Biomedical Materials Research Part A,2010,62(4):488-498.
[53] DING R, CHEN T, XU Q, et al. Mixed modification of the surface microstructure and chemical state of polyetheretherketone to improve its antimicrobial activity, hydrophilicity, cell adhesion, and bone integration [J]. ACS Biomaterials Science & Engineering,2019,6(2):842-851.
[54] HUNTER A, ARCHER C W, WALKER P S, et al. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use [J]. Biomaterials,1995,16(4):287-295. doi: 10.1016/0142-9612(95)93256-D
[55] JIMBO R, IVARSSON M, KOSKELA, et al. Protein adsorption to surface chemistry and crystal structure modification of titanium surfaces [J]. J Oral Maxillofac,2010,1(3):e3.
[56] ELAWADLY T A, RADI I , KHADEM E A , et al. Can PEEK be an implant material?Evaluation of surface topography and wettability of filled versus unfilled PEEK with different surface roughness [J]. Journal of Oral Implantology,2017,43(6):456-461.
[57] 刘吕花, 郑延延, 张丽芳, 等. 硬组织植入生物活性聚醚醚酮复合材料 [J]. 化学进展,2017,29(4):450-458. doi: 10.7536/PC161201LIU L H, ZHENG Y Y, ZHANG L F, et al. Bioactive polyetheretherketone implant composites for hard tissue [J]. Progress in Chemistry,2017,29(4):450-458. doi: 10.7536/PC161201
[58] 刘吕花, 郑延延, 张丽芳, 等. 硬组织植入聚醚醚酮表面生物活性改性研究 [J]. 中国塑料,2018,32(11):7-18.LIU L H, ZHENG Y Y, ZHANG L F, et al. Research progress in bioactive enhancement of polyetheretherketone by surface modifications for hard tissue implants [J]. China Plastics,2018,32(11):7-18.
[59] YAN J, ZHOU W, JIA Z, et al. Endowing polyetheretherketone with synergistic bactericidal effects and improved osteogenic ability [J]. Acta Biomater,2018,79:216-219. doi: 10.1016/j.actbio.2018.08.037
[60] WEBSTER T J, PATEL A A, RAHAMAN M N, et al. Anti-infective and osteointegration properties of silicon nitride, poly(ether-ether-ketone), and titanium implants [J]. Acta Biomater,2012,8(12):4447-4454. doi: 10.1016/j.actbio.2012.07.038
[61] CHENG M H, ABUAKAR M S, TANG S M, et al. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants [J]. Biomaterials,2003,24(13):2245-2250. doi: 10.1016/S0142-9612(03)00028-0
[62] YU S, HARIRAM K P, KXUNAR R, et al. In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites [J]. Biomaterials,2005,26(15):2343-2352. doi: 10.1016/j.biomaterials.2004.07.028
[63] MA R, FANG L, LUO Z, et al. Mechanical performance and in vivo bioactivity of functionally graded PEEK/HA biocomposite materials [J]. Journal of Sol-Gel Science and Technology,2014,70(3):339-345. doi: 10.1007/s10971-014-3287-7
[64] PETROVIC L, POHLE D, MUNSTEDT H, et al. Effect of βTCP filled polyetheretherketone on osteoblast cell proliferation in vitro [J]. Journal of Biomedical Science,2006,13(1):41-46. doi: 10.1007/s11373-005-9032-z
[65] von WILMONSKY C, LUTZ R, MEISEL U, et al. In vivo evaluation of β-TCP containing 3D laser sintered poly(ether-ether-ketone) composites in pigs [J]. Journal of Bioactive and Compatible Polymers,2009,24(2):169-184. doi: 10.1177/0883911508101149
[66] WU X, LIU X, JIE W, et al. Nano/TiO2/PEEK bioactive composite as a bone substitute material: In vitro and in vivo studies [J]. International Journal of Nanomedicine,2012,2012(7):1215-1225.
[67] LI E Z, GUO W L, WANG H D, et al. Research on tribological behavior of PEEK and glass fiber reinforced PEEK composite [J]. Physics Procedia,2013,50:453-460. doi: 10.1016/j.phpro.2013.11.071
[68] SUMER M, UNAL H, MIMAROGLU A. Evaluation of tribological behaviour of PEEK and glass fibre reinforced PEEK composite under dry sliding and water lubricated conditions [J]. Wears,2008,265(7-8):1061-1065. doi: 10.1016/j.wear.2008.02.008
[69] JOCKISCH K A, BROWN S A, BAUER T W, et al. Biological response to chopped carbon fiberreinforced PEEK [J]. Journal of Biomedical Materials Research,1992,26(2):133-146. doi: 10.1002/jbm.820260202
[70] UTZSCHNEIDER S, BECKER F, GRAPP T, et al. Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with uhmwpe in vivo [J]. Acta Biomaterialia,2010,6(11):4296-4304. doi: 10.1016/j.actbio.2010.06.002
[71] LIU X Y, DENG C B, LIU J Q, et al. Research on the extracorporeal cytocompatibility of a composite of HA, carbon fiber and polyetheretherketone [J]. Journal of Biomedical Engineering,2011,28(6):1159-1164.
[72] HAN C T, CHI M, ZHENG Y Y, et al. Mechanical properties and bioactivity of high performance poly(etheretherketone)/carbon nanotubes/bioactive glass biomaterials [J]. Journal of Polymer Research,2013,20(8):203. doi: 10.1007/s10965-013-0203-8
[73] FENG X, SUI Q, YANG R. Mechanical properties and in vitro bioactivity of carbon fibre-reinforced polyetheretherketone-hydroxyapatite PEEK/HA) composites for biomedical applications [J]. Chinese Journal of Materials Research,2008,22(1):18-25.
[74] KURTZ S M, DEVINE J N. PEEK biomaterials in trauma, orthopedic, and spinal implants[J]. Biomaterials, 2007, 28(32): 4845-4869.
[75] DENG Y, LIU X C, XU A X, et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite [J]. International Journal of Nanomedicine,2015,10:1425-1447.
[76] BUCK E, LI H, CERRUTI M. Surface modification strategies to improve the osseointegration of poly(etheretherketone) and its composites [J]. Macromol Biosci,2020,20(2):1900271. doi: 10.1002/mabi.201900271
[77] WEI D, DU Q, WANG Y, et al. Effect of surface chemistry and topological structure of modified titanium via hybrid method of sand blasting, acid-etching and mixed alkali treatment for cytological behavior [J]. J Control Release,2017,259:e111.
[78] LI X, CHEN T, HU J, et al. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration[J]. Colloids Surf B Biointerfaces, 2016, 144: 265-275.
[79] ZHAO Y, WONG H M, WANG W, et al. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone [J]. Biomaterials,2013,34(37):9264-9277. doi: 10.1016/j.biomaterials.2013.08.071
[80] 韩航, RAMES K, SYED A, et al. 聚醚醚酮/介孔硅酸钙镁复合材料表面周期性微沟槽对细胞行为的影响[J]. 功能高分子学报, 2020, 33(4): 350-356.HAN H, RAMES K, SYED A, et al. Effects of periodic micro-grooves on surface of polyetheretherketone/mesoporous calcium magnesium silicate composite on cell behaviors[J]. Journal of Functional Polymers, 2020, 33(4): 350-356.
[81] WU X, LIU X, WEI J, et al. Nano-TiO2/PEEK bioactive composite as a bone substitute material: In vitro and in vivo studies [J]. Int J Nanomedicine,2012,7:1215-1225.
[82] WANG S, YANG Y, LI Y, et al. Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant [J]. Colloids and Surface B: Biointerfaces,2019,176:38-46. doi: 10.1016/j.colsurfb.2018.12.056
[83] ZHANG J, WANG T, TANG S, et al. Lithium doped silica nanospheres/poly(dopamine) composite coating on polyetheretherketone to stimulate cell responses, improve bone formation and osseointegration [J]. Nanomedicine: Nanotechnology Biology and Medicine,2018,14(3):965-976. doi: 10.1016/j.nano.2018.01.017
[84] LING O Y, DENG Y, YANG L, et al. Graphene-oxide-decorated microporous polyetheretherketone with superior antibacterial capability and in vitro osteogenesis for orthopedic implant[J]. Macromol Bioscience, 2018, 18(6): e1800036.
[85] RUSSELL A A, TAWSE S A, BROADBENT J M, et al. Peri-implantitis diagnosis and treatment by New Zealand periodontists and oral maxill ofacial surgeons[J]. New Zealand Dental Journal, 2014, 110(1): 6-10.
[86] RENVERT S, ROOS-JANSAKER A M, CLAFFEY N. Non-surgical treatment of peri-implant mucositis and peri-implantitis: A literature review [J]. J Clin Periodontol,2008,35(S8):305-315.
[87] 李振光. 氧化锌/石墨烯填充碳纤维增强聚醚醚酮复合材料的性能研究[D]. 长春: 长春工业大学, 2017.LI Z G. The nvestigation on the properties of poly (ether ether ketone)/carbon fiber reinforced with zinc oxide/graphene[D]. Changchun: Changchun University of Technology, 2017.
[88] 刘秀菊. 磁控溅射纳米银改性聚醚醚酮抗菌性能的实验研究[D]. 长春: 吉林大学, 2017.LIU X J. Antibacterical properties of nano-silver coated PEEK prepared through magnetron sputtering[D]. Changchun: Jilin University, 2017.
[89] 王勇. 基于聚多巴胺辅助表面沉积含银涂层的聚醚醚酮的制备及抗菌性能与生物相容性研究[D]. 江苏苏州: 苏州大学, 2016.WANG Y. Preparation and antibacterical property and biocompatibility of siver-coated PEEK using polydopamine-assisted deposition technique[D]. Suzhou, Jiangsu: Suzhou University, 2016.
[90] GIUSEPPE P, MARIN E, ADACHI T, et al. Incorporating Si3N4 into PEEK to produce antibacterial, osteocondutive, and radiolucent spinal implants [J]. Macromol Biosci,2018,18(6):e1800033. doi: 10.1002/mabi.201800033
[91] DENG L, DENG Y, XIE K. AgNPs-decorated 3D printed PEEK implant for infection control and bone repair [J]. Colloids Surf B Biointerfaces,2017,160:483-492. doi: 10.1016/j.colsurfb.2017.09.061
[92] DAI Y, CHU L, LUO Z, et al. Effects of a coating of nano silicon nitride on porous polyetheretherketone on behaviors of MC3T3-E1 cells in vitro and vascularization and osteogenesis in vivo [J]. ACS Biomaterials Science & Engineering,2019,5(12):6425-6435.
[93] CHUBRIK A, SENATOY F, KOLESNIKOV E, et al. Highly porous PEEK and PEEK/HA scaffolds with Escherichia coli-derived recombinant BMP-2 and erythropoietin for enhanced osteogenesis and angiogenesis [J]. Polymer Testing,2020,87:106518. doi: 10.1016/j.polymertesting.2020.106518
[94] SHIBUYA M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis [J]. Cell Structure & Function,2001,26(1):25-35.
[95] NILLESEN S T, GEUTJES P J, WISMANS R, et al. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF [J]. Biomaterials,2007,28(6):1123-1131. doi: 10.1016/j.biomaterials.2006.10.029
[96] DONG T, DUAN C, WANG S, et al. Multifunctional surface with enhanced angiogenesis for improving long-term osteogenic fixation of poly(ether ether ketone) implants [J]. ACS Appl Mater Interfaces,2020,12(13):14971-14982. doi: 10.1021/acsami.0c02304
[97] PENG T, OGAWA Y, AKEBONO H, et al. Finite-element analysis and optimization of the mechanical properties of polyetheretherketone (PEEK) clasps for removable partial dentures [J]. Journal of Prosthodontic Research,2019,64(3):250-256.
[98] COFANO F, PERNA G D, MONTICELLI M, et al. Carbon fiber reinforced vs titanium implants for fixation in spinal metastases: A comparative clinical study about safety and effectiveness of the new “carbon-strategy” [J]. Journal of Clinical Neuroence,2020,75:106-111.
[99] OUYANG L, SUN Z, WANG D, et al. Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure [J]. Colloids & Surfaces B Biointerfaces,2017,163:175-183.
[100] CHEN Z, KLEIN T, MURRAY R Z, et al. Osteoimmunomodulation: A new aspect for the development and evaluation of bone biomaterials [J]. Meterials Today,2016,19(6):304-321. doi: 10.1016/j.mattod.2015.11.004
[101] TAKAYANAGI H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems [J]. Nat Rev Immunol,2007,7(4):292-304. doi: 10.1038/nri2062
[102] YANG H, TANG X, TIAN Z, et al. Effects of nano-hydroxyapatite/polyetheretherketone-coated, sandblasted, large-grit, and acid-etched implants on inflammatory cytokines and osseointegration in a peri-implantitis model in beagle dogs [J]. Med Sci Monit,2017,23:4601-4611. doi: 10.12659/MSM.903048
[103] LIU W, LI J, CHENG M, et al. Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration [J]. Advanced Science,2018,5(10):1800749. doi: 10.1002/advs.201800749
[104] LIU W, LI J, CHENG M, et al. A surface-engineered polyetheretherketone biomaterial implant with direct and immunoregulatory antibacterial activity against methicillin-resistant Staphylococcus aureus [J]. Biomaterials,2019,208:8-20. doi: 10.1016/j.biomaterials.2019.04.008
[105] YANG C, OUYANG L, WANG W, et al. Sodium butyrate-modified sulfonated polyetheretherketone modulates macrophage behavior and shows enhanced antibacterial and osteogenic functions during implant-associated infections [J]. J Mater Chem B,2019,7(36):5541-5553. doi: 10.1039/C9TB01298B
[106] EKAMBARAM R, DHARMALINGAM S. Fabrication and evaluation of electrospun biomimetic sulphonated PEEK nanofibrous scaffold for human skin cell proliferation and wound regeneration potential [J]. Materials Science and Engineering C,2020,115:111150. doi: 10.1016/j.msec.2020.111150
[107] YU W, ZHANG H, LAN A, et al. Enhanced bioactivity and osteogenic property of carbon fiber reinforced polyetheretherketone composites modified with amino groups [J]. Colloids and Surfaces B: Biointerfaces,2020,193:111098. doi: 10.1016/j.colsurfb.2020.111098
[108] DENG Y, YANG L, HUANG X, et al. Dual Ag/ZnO-decorated micro-/nano-porous sulfonated polyetherether-ketone with superior antibacterial capability and biocompatibility via layer-by-layer self-assembly strategy [J]. Macromol Biosci,2018,18:1800028. doi: 10.1002/mabi.201800028
[109] DENG Y, SHI X, CHEN Y, et al. A bacteria-triggered pH-responsive osteopotentiating coating on 3D-printed polyetheretherketone scaffolds for infective bone defect repair [J]. Industrial & Engineering Chemistry Research,2020,59(26):12123-12135.
[110] DENG Y, GAO X, SHI X, et al. Graphene oxide and adiponectin-functionalized sulfonated poly(etheretherketone) with effective osteogenicity and remotely repeatable photodisinfection [J]. Chem Mater,2020,32(5):2180-2193. doi: 10.1021/acs.chemmater.0c00290