[1] JELONEK K, ZAJDEL A, WILCZOK A, et al. Dual-targeted biodegradable micelles for anticancer drug delivery [J]. Materials Letters,2019,241:187-189. doi: 10.1016/j.matlet.2019.01.081
[2] KONG M, PARK H, CHENG X, et al. Spatial-temporal event adaptive characteristics of nanocarrier drug delivery in cancer therapy [J]. Journal of Controlled Release,2013,172(1):281-291. doi: 10.1016/j.jconrel.2013.08.022
[3] SUK J S, XUA Q, KI MA, N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery [J]. Advanced Drug Delivery Reviews,2016,99:28-51. doi: 10.1016/j.addr.2015.09.012
[4] HSU H, HAN Y, CHEONG M, et al. Dendritic PEG outer shells enhance serum stability of polymeric micelles [J]. Nanomedicine: Nanotechnology, Biology, and Medicine,2018,14(6):1879-1889. doi: 10.1016/j.nano.2018.05.010
[5] 周亚敏, 吴鲁艳, 白雪, 等. pH和还原双重敏感性超支化纳米胶束的制备及其释药性能 [J]. 功能高分子学报,2016,29(3):346-351.
[6] LI Y, BAI T, LI Y, et al. Branched polytetrahydrofuran and poly(tetrahydrofuran-co-ε-caprolactone) synthesized by Janus polymerization: A novel self-healing material [J]. Macromolecular Chemistry and Physics,2017,218(3):1600450-456. doi: 10.1002/macp.201600450
[7] KOSAKOWSKA K A, CASEY B K, ALBERT J N L, et al. Synthesis and self-assembly of amphiphilic star/linear-dendritic polymers: effect of core versus peripheral branching on reverse micelle aggregation [J]. Biomacromolecules,2018,19(8):3177-3189. doi: 10.1021/acs.biomac.8b00679
[8] DAI Y, CHEN X, ZHANG X. Recent advances in stimuli-responsive polymeric micelles via click chemistry [J]. Polymer Chemistry,2019,10(1):34-44. doi: 10.1039/C8PY01174E
[9] WANG D, WANG J, HUANG H, et al. Brush-shaped RAFT polymer micelles as nanocarriers for a ruthenium (II) complex photodynamic anticancer drug [J]. European Polymer Journal,2019,113:267-275. doi: 10.1016/j.eurpolymj.2019.01.074
[10] 杨友强, 孙清清, 张灿阳, 等. ARGET ATRP与ROP结合制备pH响应两亲性聚合物分子刷及其自组装研究 [J]. 化学学报,2012,70(4):505-511.
[11] WU Y Q, XIAO Y, HUANG Y H, et al. Rod-shaped micelles based on PHF-g-(PCL-PEG) with pH-triggered doxorubicin release and enhanced cellular uptake [J]. Biomacromolecules,2019,20:1167-1177. doi: 10.1021/acs.biomac.8b01430
[12] 刘艳华, 周成铭, 杨彤. 透明质酸聚合物胶束的制备及其内涵体的pH敏感性 [J]. 功能高分子学报,2018,31(3):255-261.
[13] ZHANG Z, YU M, AN T, et al. Tumor microenvironment stimuli-responsive polymeric prodrug micelles for improved cancer therapy [J]. Pharmaceutical Research,2020,37(1):1-17. doi: 10.1007/s11095-019-2719-z
[14] XU Y, QU A, MA R, et al. pH-responsive micelles from a blend of PEG-b-PLA and PLA-b-PDPA block copolymers: Core protection against enzymatic degradation [J]. Chinese Journal of Polymer Science,2018,36(11):1262-1268. doi: 10.1007/s10118-018-2149-0
[15] ZHOU Q, ZHANG L, YANG T, et al. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy [J]. International Journal of Nanomedicine,2018,13:2921-2942. doi: 10.2147/IJN.S158696
[16] 刘艳红, 周建平, 霍美蓉. 肿瘤微环境响应型智能纳米药物载体的研究进展 [J]. 中国药科大学学报,2016,47(2):125-133. doi: 10.11665/j.issn.1000-5048.20160201
[17] ZHOU X, LUO S, TANG R, et al. Diblock copolymers of polyethylene glycol and a polymethacrylamide with side-chains containing twin ortho ester rings: Synthesis, characterization, and evaluation as potential pH-responsive micelles [J]. Macromolecular Bioscience,2015,15(3):385-394. doi: 10.1002/mabi.201400395
[18] WANG J, LU Y, LI S, et al. pH-Sensitive amphiphilic triblock copolymers containing ortho ester mainchains as efficient drug delivery platforms [J]. Materials Science and Engineering C,2019,94:169-178. doi: 10.1016/j.msec.2018.09.029
[19] WANG R, CHENG G, YAN G, et al. Rational design of acid-labile branched polycation with superior gene transfection capacity [J]. Polymer,2017,123:1-9. doi: 10.1016/j.polymer.2017.07.002
[20] QIU L, ZHU M, GONG K, et al. pH-Triggered degradable polymeric micelles for targeted anti-tumor drug delivery [J]. Materials Science and Engineering C,2017,78:912-922. doi: 10.1016/j.msec.2017.04.137
[21] 陶扬洋, 巩凯, 王睿, 等. 新型聚原酸酯共聚物的合成及性能研究 [J]. 高分子通报,2013(6):33-38.