[1] GUST D, MOORE T A, MOORE A L. Solar fuels via artificial photosynthesis[J]. Accounts of Chemical Research, 2009, 42(12):1890-1898. doi: 10.1021/ar900209b
[2] GRAY H B, WINKLER J R. Electron transfer in proteins[J]. Annual Review of Biochemistry, 1996, 65:537-561. doi: 10.1146/annurev.bi.65.070196.002541
[3] WASIELEWSKI M R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis[J]. Chemical Reviews, 1992, 92(3):435-61. doi: 10.1021/cr00011a005
[4] GAO P, CAO H, DING Y, et al. Synthesis of hydrogen-bonded pore-switchable cylindrical vesicles via visible-light-mediated RAFT room-temperature aqueous dispersion polymerization[J]. ACS Macro Letters, 2016, 5(12):1327-1331. doi: 10.1021/acsmacrolett.6b00796
[5] YU Q, DING Y, CAO H, et al. Use of polyion complexation for polymerization-induced self-assembly in water under visible light irradiation at 25℃[J]. ACS Macro Letters, 2015, 4(11):1293-1296. doi: 10.1021/acsmacrolett.5b00699
[6] GRAETZEL M. Artificial photosynthesis:Water cleavage into hydrogen and oxygen by visible light[J]. Accounts of Chemical Research, 1981, 14(12):376-384. doi: 10.1021/ar00072a003
[7] MEYER T J. Chemical approaches to artificial photosynthesis[J]. Accounts of Chemical Research, 1989, 22(5):163-170. doi: 10.1021/ar00161a001
[8] TAKEDA H, ISHITANI O. Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies[J]. Coordination Chemistry Reviews, 2010, 254(3-4):346-354. doi: 10.1016/j.ccr.2009.09.030
[9] PRIER C K, RANKIC D A, MACMILLAN D W C. Visible light photoredox catalysis with transition metal complexes:Applications in organic synthesis[J]. Chemical Reviews, 2013, 113(7):5322-5363. doi: 10.1021/cr300503r
[10] NARAYANAM J M R, STEPHENSON C R J. Visible light photoredox catalysis:Applications in organic synthesis[J]. Chemical Society Reviews, 2011, 40(1):102-113. doi: 10.1039/B913880N
[11] SCHULTZ D M, YOON T P. Solar synthesis:Prospects in visible light photocatalysis[J]. Science, 2014, 343(6174):985.
[12] KALYANASUNDARAM K, GRATZEL M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices[J]. Coordination Chemistry Reviews, 1998, 177:347-414. doi: 10.1016/S0010-8545(98)00189-1
[13] LOWRY M S, BERNHARD S. Synthetically tailored excited states:Phosphorescent, cyclometalated iridium(Ⅲ) complexes and their applications[J]. Chemistry:A European Journal, 2006, 12(31):7970-7977. doi: 10.1002/(ISSN)1521-3765
[14] ULBRICHT C, BEYER B, FRIEBE C, et al. Recent developments in the application of phosphorescent iridium(Ⅲ) complex systems[J]. Advanced Materials, 2009, 21(44):4418-4441. doi: 10.1002/adma.v21:44
[15] HOWERTON B S, HEIDARY D K, GLAZER E C. Strained ruthenium complexes are potent light-activated anticancer agents[J]. Journal of the American Chemical Society, 2012, 134(20):8324-8327. doi: 10.1021/ja3009677
[16] YAGCI Y, JOCKUSCH S, TURRO N J. Photoinitiated polymerization:Advances, challenges, and opportunities[J]. Macromolecules, 2010, 43(15):6245-6260. doi: 10.1021/ma1007545
[17] TEHFE M A, LOURADOUR F, LALEVEE J, et al. Photopolymerization reactions:on the way to a green and sustainable chemistry[J]. Applied Sciences, 2013, 3(2):490-514. doi: 10.3390/app3020490
[18] YAMAGO S, NAKAMURA Y Recent progress in the use of photoirradiation in living radical polymerization[J]. Polymer, 2013, 54(3):981-994. doi: 10.1016/j.polymer.2012.11.046
[19] DADASHI-SILAB S, ATILLA TASDELEN M, YAGCI Y Photoinitiated atom transfer radical polymerization:Current status and future perspectives[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2014, 52(20):2878-2888. doi: 10.1002/pola.27327
[20] FOUASSIER J P, ALLONAS X, BURGET D Photopolymerization reactions under visible lights:Principle, mechanisms and examples of applications[J]. Progress in Organic Coatings, 2003, 47(1):16-36. doi: 10.1016/S0300-9440(03)00011-0
[21] ANDRZEJEWSKA E Photopolymerization kinetics of multifunctional monomers[J]. Progress in Polymer Science, 2001, 26(4):605-665. doi: 10.1016/S0079-6700(01)00004-1
[22] XIAO P, ZHANG J, DUMUR F, et al. Visible light sensitive photoinitiating systems:Recent progress in cationic and radical photopolymerization reactions under soft conditions[J]. Progress in Polymer Science, 2015, 41:32-66. doi: 10.1016/j.progpolymsci.2014.09.001
[23] DADASHI-SILAB S, DORAN S, YAGCI Y, et al. Photoinduced electron transfer reactions for macromolecular syntheses[J]. Chemical Reviews, 2016, 116:10212-10275. doi: 10.1021/acs.chemrev.5b00586
[24] PAN X, TASDELEN M A, LAUN J, et al. Photomediated controlled radical polymerization[J]. Progress in Polymer Science, 2016, 62:73-125. doi: 10.1016/j.progpolymsci.2016.06.005
[25] CHEN M, ZHONG M, JOHNSON J A. Light-controlled radical polymerization:Mechanisms, methods, and applications[J]. Chemical Reviews, 2016, 116(17):10167-10211. doi: 10.1021/acs.chemrev.5b00671
[26] MCKENZIE T G, FU Q, UCHIYAMA M, et al. Beyond traditional RAFT:Alternative activation of thiocarbonylthio compounds for controlled polymerization[J]. Advanced Science, 2016, 3(9):1500394. doi: 10.1002/advs.201500394
[27] ZHENG J, WANG C G, YAMAGUCHI Y, et al. Temperature-selective dual radical generation from alkyl diiodide:Applications to synthesis of asymmetric CABC multi-block copolymers and their unique assembly structures[J]. Angewandte Chemie International Edition, 2018, 57(6):1552-1556. doi: 10.1002/anie.v57.6
[28] WANG C G, GOTO A. Solvent-selective reactions of alkyl iodide with sodium azide for radical generation and azide substitution and their application to one-pot synthesis of chain-end-functionalized polymers[J]. Journal of the American Chemical Society, 2017, 139(30):10551-10560. doi: 10.1021/jacs.7b05879
[29] MUTHUKRISHNAN S, PAN E H, STENZEL M H, et al. Ambient temperature RAFT polymerization of acrylic acid initiated with ultraviolet radiation in aqueous solution[J]. Macromolecules, 2007, 40(9):2978-2980. doi: 10.1021/ma0703094
[30] LIU G, SHI H, CUI Y, et al. Toward rapid aqueous RAFT polymerization of primary amine functional monomer under visible light irradiation at 25℃[J]. Polymer Chemistry, 2013(4):1176-1182.
[31] CHEN M, JOHNSON J A. Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques[J]. Chemical Communications, 2015, 51(31):6742-6745. doi: 10.1039/C5CC01562F
[32] ZHAO Y, YU M, ZHANG S, et al. A Well-defined versatile photoinitiator (salen)Co-CO2CH3 for visible light initiated living/controlled radical polymerization[J]. Chemical Science, 2015, 6:2979-2988. doi: 10.1039/C5SC00477B
[33] LIU X, TIAN L, WU Z, et al. Visible-light-induced synthesis of polymers with versatile end groups mediated by organocobalt complexes[J]. Polymer Chemistry, 2017, 8(39):6033-6038. doi: 10.1039/C7PY01086A
[34] LU Y, NEMOTO T, TOSAKA M, et al. Synthesis of structurally controlled hyperbranched polymers using a monomer having hierarchical reactivity[J]. Nature Communications, 2017, 8(1):1863. doi: 10.1038/s41467-017-01838-0
[35] NAKAMURA Y, EBELING B, WOLPERS A, et al. Controlled radical polymerization of ethylene using organotellurium compounds[J]. Angewandte Chemie International Edition, 2018, 57(1):305-309. doi: 10.1002/anie.201709946
[36] ZHENG X, YUE M, YANG P, et al. Cycloketyl radical mediated living polymerization[J]. Polymer Chemistry, 2012, 3(8):1982-1986. doi: 10.1039/c2py20117h
[37] ASANDEI A D, ADEBOLU O I, SIMPSON C P. Mild-temperature Mn2(CO)10-photomediated controlled radical polymerization of vinylidene fluoride and synthesis of well-defined poly(vinylidene fluoride) block copolymers[J]. Journal of the American Chemical Society, 2012, 134(14):6080-6083. doi: 10.1021/ja300178r
[38] KOUMURA K, SATOH K, KAMIGAITO M. Manganese-based controlled/living radical polymerization of vinyl acetate, methyl acrylate, and styrene:Highly active, versatile, and photoresponsive systems[J]. Macromolecules, 2008, 41(20):7359-7367. doi: 10.1021/ma801151s
[39] SHANMUGAM S, XU J, BOYER C. Light-regulated polymerization under near-infrared/far-red irradiation catalyzed by bacteriochlorophyll α[J]. Angewandte Chemie International Edition, 2016, 55(3):1036-1040. doi: 10.1002/anie.201510037
[40] MATYJASZEWSKI K, XIA J. Atom transfer radical polymerization[J]. Chemical Reviews, 2001, 101(9):2921-2990. doi: 10.1021/cr940534g
[41] OUCHI M, TERASHIMA T, SAWAMOTO M. Transition metal-catalyzed living radical polymerization:Toward perfection in catalysis and precision polymer synthesis[J]. Chemical Reviews, 2009, 109(11):4963-5050. doi: 10.1021/cr900234b
[42] MOAD G, RIZZARDO E, THANG S H. Radical addition-fragmentation chemistry in polymer synthesis[J]. Polymer, 2008, 49(5):1079-1131. doi: 10.1016/j.polymer.2007.11.020
[43] MOAD G, RIZZARDO E, THANG S H. Toward living radical polymerization[J]. Accounts of Chemical Research, 2008, 41(9):1133-1142. doi: 10.1021/ar800075n
[44] KEDDIE D J A. Guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization[J]. Chemical Society Reviews, 2014, 43(2):496-505. doi: 10.1039/C3CS60290G
[45] HILL M R, CARMEAN R N, SUMERLIN B S. Expanding the scope of RAFT polymerization:Recent advances and new horizons[J]. Macromolecules, 2015, 48(16):5459-5469. doi: 10.1021/acs.macromol.5b00342
[46] HAWKER C J, BOSMAN A W, HARTH E. New polymer synthesis by nitroxide mediated living radical polymerizations[J]. Chemical Reviews, 2001, 101(12):3661-3688. doi: 10.1021/cr990119u
[47] NICOLAS J, GUILLANEUF Y, LEFAY C, et al. Nitroxide-mediated polymerization[J]. Progress in Polymer Science, 2013, 38(1):63-235. doi: 10.1016/j.progpolymsci.2012.06.002
[48] SCIANNAMEA V, JEROME R, DETREMBLEUR C. in-situ Nitroxide-mediated radical polymerization (NMP) processes:Their understanding and optimization[J]. Chemical Reviews, 2008, 108(3):1104-1126. doi: 10.1021/cr0680540
[49] FORS B P, HAWKER C J. Control of a living radical polymerization of methacrylates by light[J]. Angewandte Chemie International Edition, 2012, 51(35):8850-8853. doi: 10.1002/anie.v51.35
[50] XU J, JUNG K, ATME A, et al. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance[J]. Journal of the American Chemical Society, 2014, 136(14):5508-5519. doi: 10.1021/ja501745g
[51] SHANMUGAM S, XU J, BOYER C. Exploiting metalloporphyrins for selective living radical polymerization tunable over visible wavelengths[J]. Journal of the American Chemical Society, 2015, 137(28):9174-9185. doi: 10.1021/jacs.5b05274
[52] LALEVEE J, PETER M, DUMUR F, et al. Subtle ligand effects in oxidative photocatalysis with iridium complexes:Application to photopolymerization[J]. Chemistry:A European Journal, 2011, 17(52):15027-15031. doi: 10.1002/chem.201101445
[53] LIU X, ZHANG L, CHENG Z, et al. Metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) via a visible light organic photocatalyst[J]. Polymer Chemistry, 2016, 7(3):689-700. doi: 10.1039/C5PY01765C
[54] SHANMUGAM S, XU J, BOYER C. Photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of vinyl acetate and N-vinylpyrrolidinone:Kinetic and oxygen tolerance study[J]. Macromolecules, 2014, 47(15):4930-4942. doi: 10.1021/ma500842u
[55] WANG J, RIVERO M, MUNOZ BONILLA A, et al. Natural RAFT polymerization:Recyclable-catalyst-aided, opened-to-air, and sunlight-photolyzed RAFT polymerizations[J]. ACS Macro Letters, 2016, 5(11):1278-1282. doi: 10.1021/acsmacrolett.6b00818
[56] LIU Z, LV Y, AN Z. Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance[J]. Angewandte Chemie International Edition, 2017, 56(44):13852-13856. doi: 10.1002/anie.201707993
[57] TREAT N J, SPRAFKE H, KRAMER J W, et al. Metal-free atom transfer radical polymerization[J]. Journal of the American Chemical Society, 2014, 136(45):16096-16101. doi: 10.1021/ja510389m
[58] TREAT N J, FORS B P, KRAMER J W, et al. Controlled radical polymerization of acrylates regulated by visible light[J]. ACS Macro Letters, 2014, 3(6):580-584. doi: 10.1021/mz500242a
[59] KONKOLEWICZ D, SCHRODER K, BUBACK J, et al. Visible light and sunlight photoinduced ATRP with ppm of Cu catalyst[J]. ACS Macro Letters, 2012, 1(10):1219-1223. doi: 10.1021/mz300457e
[60] CIFTCI M, TASDELEN M A, LI W, et al. Photoinitiated ATRP in inverse microemulsion[J]. Macromolecules, 2013, 46(24):9537-9543. doi: 10.1021/ma402058a
[61] POELMA J E, FORS B P, MEYERS G F, et al. Fabrication of complex three-dimensional polymer brush nanostructures through light-mediated living radical polymerization[J]. Angewandte Chemie International Edition, 2013, 52(27):6844-6848. doi: 10.1002/anie.201301845
[62] MELKER A, FORS B P, HAWKER C J, et al. Continuous flow synthesis of poly(methyl methacrylate) via a light-mediated controlled radical polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2015, 53:2693-2698. doi: 10.1002/pola.v53.23
[63] XU J, JUNG K, CORRIGAN N A, et al. Aqueous photoinduced living/controlled polymerization:Tailoring for bioconjugation[J]. Chemical Science, 2014, 5(9):3568-3575. doi: 10.1039/C4SC01309C
[64] SHEN L, LU Q, ZHU A, et al. Photocontrolled RAFT polymerization mediated by a supramolecular catalyst[J]. ACS Macro Letters, 2017, 6(6):625-631. doi: 10.1021/acsmacrolett.7b00343
[65] TAN J, XU Q, ZHANG Y, et al. Room temperature synthesis of self-assembled AB/B and ABC/BC blends by photoinitiated polymerization-induced self-assembly (Photo-PISA) in water[J]. Macromolecules, 2018, 51(18):7396-7406. doi: 10.1021/acs.macromol.8b01456
[66] TAN J, RAO X, WU X, et al. Photoinitiated RAFT dispersion polymerization:A straightforward approach toward highly monodisperse functional microspheres[J]. Macromolecules, 2012, 45(21):8790-8795.
[67] MA W, ZHANG X, MA Y, et al. Photoinduced controlled radical polymerization of methacrylates with benzaldehyde derivatives as organic catalysts[J]. Polymer Chemistry, 2017, 8(23):3574-3585. doi: 10.1039/C7PY00408G
[68] MA W, CHEN D, MA Y, et al. Visible-light induced controlled radical polymerization of methacrylates with Cu(dap)2Cl as a photoredox catalyst[J]. Polymer Chemistry, 2016, 7(25):4226-4236. doi: 10.1039/C6PY00687F
[69] MIYAKE G M, THERIOT J C. Perylene as an organic photocatalyst for the radical polymerization of functionalized vinyl monomers through oxidative quenching with alkyl bromides and visible light[J]. Macromolecules, 2014, 47(23):8255-8261. doi: 10.1021/ma502044f
[70] PAN X, FANG C, FANTIN M, et al. Mechanism of photoinduced metal-free atom transfer radical polymerization:Experimental and computational studies[J]. Journal of the American Chemical Society, 2016, 138(7):2411-2425. doi: 10.1021/jacs.5b13455
[71] DADASHI-SILAB S, PAN X, MATYJASZEWSKI K. Phenyl benzo[b] phenothiazine as a visible light photoredox catalyst for metal-free atom transfer radical polymerization[J]. Chemistry:A European Journal, 2017, 23(25):5972-5977. doi: 10.1002/chem.201605574
[72] ZHAO Y, GONG H, JIANG K, et al. Organocatalyzed photoredox polymerization from aromatic sulfonyl halides:Facilitating graft from aromatic C-H bonds[J]. Macromolecules, 2018, 51(3):938-946. doi: 10.1021/acs.macromol.8b00134
[73] PERCEC V, BARBOIU B, NEUMANN A, et al. Metal-catalyzed "living" radical polymerization of styrene initiated with arenesulfonyl chlorides. From heterogeneous to homogeneous catalysis[J]. Macromolecules, 1996, 29(10):3665-3668. doi: 10.1021/ma960061a
[74] PERCEC V, BARBOIU B. "Living" radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl[J]. Macromolecules, 1995, 28(23):7970-7972. doi: 10.1021/ma00127a057
[75] LOWRY M S, GOLDSMITH J I, SLINKER J D, et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(Ⅲ) complex[J]. Chemistry of Materials, 2005, 17(23):5712-5719. doi: 10.1021/cm051312+
[76] JURIS A, BALZANI V, BELSER P, et al. Characterization of the excited state properties of some new photosensitizers of the ruthenium (polypyridine) family[J]. Helvetica Chimica Acta, 1981, 64(7):2175-2182. doi: 10.1002/(ISSN)1522-2675
[77] ZHANG X F, ZHANG I, LIU L. Photophysics of halogenated fluoresceins:Involvement of both intramolecular electron transfer and heavy atom effect in the deactivation of excited states[J]. Photochemistry and Photobiology, 2010, 86(3):492-498. doi: 10.1111/php.2010.86.issue-3
[78] SHEN T, ZHAO Z G, YU Q, et al. Photosensitized reduction of benzil by heteroatom-containing anthracene dyes[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1989, 47(2):203-212. doi: 10.1016/1010-6030(89)87066-2
[79] BACHMAN J C, KAVIAN R, GRAHAM D J, et al. Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes[J]. Nature Communications, 2015, 67040.
[80] KIKUCHI K, NIWA T, TAKAHASHI Y, et al. Quenching mechanism in a highly exothermic region of the Rehm-Weller relationship for electron-transfer fluorescence quenching[J]. The Journal of Physical Chemistry A, 1993, 97(19):5070-5073. doi: 10.1021/j100121a037
[81] SINGH-RACHFORD T N, CASTELLANO F N. Triplet sensitized red-to-blue photon upconversion[J]. The Journal of Physical Chemistry Letters, 2010, 1(1):195-200. doi: 10.1021/jz900170m
[82] BRUNNER K, VAN DIJKEN A, B RNER H, et al. Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes:Tuning the HOMO level without influencing the triplet energy in small molecules[J]. Journal of the American Chemical Society, 2004, 126(19):6035-6042. doi: 10.1021/ja049883a
[83] ISHIMATSU R, MATSUNAMI S, KASAHARA T, et al. Electrogenerated chemiluminescence of donor-acceptor molecules with thermally activated delayed fluorescence[J]. Angewandte Chemie International Edition, 2014, 53(27):6993-6996. doi: 10.1002/anie.201402615
[84] JUSTIN THOMAS K R, LIN J T, TAO Y-T, et al. Light-emitting carbazole derivatives:Potential electroluminescent materials[J]. Journal of the American Chemical Society, 2001, 123(38):9404-9411. doi: 10.1021/ja010819s
[85] THERIOT J C, MCCARTHY B G, LIM C H, et al. Organocatalyzed atom transfer radical polymerization:Perspectives on catalyst design and performance[J]. Macromolecular Rapid Communications, 2017, 38(13):1700040. doi: 10.1002/marc.201700040
[86] LIM C-H, RYAN M D, MCCARTHY B G, et al. Intramolecular charge transfer and ion pairing in N, N-diaryl dihydrophenazine photoredox catalysts for efficient organocatalyzed atom transfer radical polymerization[J]. Journal of the American Chemical Society, 2017, 139(1):348-355. doi: 10.1021/jacs.6b11022
[87] THERIOT J C, LIM C-H, YANG H, et al. Organocatalyzed atom transfer radical polymerization driven by visible light[J]. Science, 2016, 352(6289):1082-1086. doi: 10.1126/science.aaf3935
[88] PEARSON R M, LIM C-H, MCCARTHY B G, et al. Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts[J]. Journal of the American Chemical Society, 2016, 138(35):11399-11407. doi: 10.1021/jacs.6b08068
[89] THERIOT J C, MCCARTHY B G, LIM C H, et al. Organocatalyzed atom transfer radical polymerization:Perspectives on catalyst design and performance[J]. Macromolecular Rapid Communications, 2017, 38(13):1700040. doi: 10.1002/marc.201700040
[90] PEARSON R M, LIM C H, MCCARTHY B G, et al. Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts[J]. J Am Chem Soc, 2016, 138(35):11399-11407. doi: 10.1021/jacs.6b08068
[91] KUTAHYA C, ALLUSHI A, ISCI R, et al. Photoinduced metal-free atom transfer radical polymerization using highly conjugated thienothiophene derivatives[J]. Macromolecules, 2017, 50(17):6903-6910. doi: 10.1021/acs.macromol.7b01335
[92] CHEN M, DENG S, GU Y, et al. Logic-controlled radical polymerization with heat and light:Multiple-stimuli switching of polymer chain growth via a recyclable, thermally responsive gel photoredox catalyst[J]. Journal of the American Chemical Society, 2017, 139(6):2257-2266. doi: 10.1021/jacs.6b10345
[93] ZHOU H, JOHNSON J A. Photo-controlled growth of telechelic polymers and end-linked polymer gels[J]. Angewandte Chemie International Edition, 2013, 52(8):2235-2238. doi: 10.1002/anie.201207966
[94] CHEN M, CU Y, SINGH A, et al. Living additive manufacturing:Transformation of parent gels into diversely functionalized daughter gels made possible by visible light photoredox catalysis[J]. ACS Central Science, 2017, 3(2):124-134. doi: 10.1021/acscentsci.6b00335
[95] SHANMUGAM S, XU J, BOYER C. Living additive manufacturing[J]. ACS Central Science, 2017, 3(2):95-96. doi: 10.1021/acscentsci.7b00025
[96] SHANMUGAM S, XU J, BOYER C. A logic gate for external regulation of photopolymerization[J]. Polymer Chemistry, 2016, 7(42):6437-6449. doi: 10.1039/C6PY01361A
[97] LIANG Y, BERGBREITER D E. Recyclable polyisobutylene (PIB)-bound organic photoredox catalyst catalyzed polymerization reactions[J]. Polymer Chemistry, 2016, 7(12):2161-2165. doi: 10.1039/C6PY00114A
[98] SHANMUGAM S, XU S, ADNAN N N M, et al. Heterogeneous photocatalysis as a means for improving recyclability of organocatalyst in "living" radical polymerization[J]. Macromolecules, 2018, 51(3):779-790. doi: 10.1021/acs.macromol.7b02215
[99] YANG Q, LALEV E J, POLY J. Development of a robust photocatalyzed ATRP mechanism exhibiting good tolerance to oxygen and inhibitors[J]. Macromolecules, 2016, 49(20):7653-7666. doi: 10.1021/acs.macromol.6b01808
[100] FU Q, RUAN Q, MCKENZIE T G, et al. Development of a robust PET-RAFT polymerization using graphitic carbon nitride (g-C3N4)[J]. Macromolecules, 2017, 50(19):7509-7516. doi: 10.1021/acs.macromol.7b01651
[101] DA M. COSTA L P, MCKENZIE T G, SCHWARZ K N, et al. Observed photoenhancement of RAFT polymerizations under fume hood lighting[J]. ACS Macro Letters, 2016, 5(11):1287-1292. doi: 10.1021/acsmacrolett.6b00828
[102] FU Q, XIE K, MCKENZIE T G, et al. Trithiocarbonates as intrinsic photoredox catalysts and RAFT agents for oxygen tolerant controlled radical polymerization[J]. Polymer Chemistry, 2017, 8(9):1519-1526. doi: 10.1039/C6PY01994C
[103] SHANMUGAM S, XU J, BOYER C. Aqueous RAFT photopolymerization with oxygen tolerance[J]. Macromolecules, 2016, 49(24):9345-9357. doi: 10.1021/acs.macromol.6b02060
[104] SHANMUGAM S, XU J, BOYER C. Photoinduced oxygen reduction for dark polymerization[J]. Macromolecules, 2017, 50(5):1832-1846. doi: 10.1021/acs.macromol.7b00192
[105] CORRIGAN N, XU J, BOYER C. A photoinitiation system for conventional and controlled radical polymerization at visible and NIR wavelengths[J]. Macromolecules, 2016, 49(9):3274-3285. doi: 10.1021/acs.macromol.6b00542
[106] YEOW J, SHANMUGAM S, CORRIGAN N, et al. A polymerization-induced self-assembly approach to nanoparticles loaded with singlet oxygen generators[J]. Macromolecules, 2016, 49(19):7277-7285. doi: 10.1021/acs.macromol.6b01581
[107] XU S, NG G, XU J, et al. 2-(Methylthio)ethyl methacrylate:A versatile monomer for stimuli responsiveness and polymerization-induced self-assembly in the presence of air[J]. ACS Macro Letters, 2017, 6(11):1237-1244. doi: 10.1021/acsmacrolett.7b00731
[108] DING Z, DING M, GAO C, et al. in situ Synthesis of coil-coil diblock copolymer nanotubes and tubular Ag/polymer nanocomposites by RAFT dispersion polymerization in poly(ethylene glycol)[J]. Macromolecules, 2017, 50(19):7593-7602. doi: 10.1021/acs.macromol.7b01363
[109] YEOW J, SUGITA O R, BOYER C. Visible light-mediated polymerization-induced self-assembly in the absence of external catalyst or initiator[J]. ACS Macro Letters, 2016, 5(5):558-564. doi: 10.1021/acsmacrolett.6b00235
[110] CORRIGAN N, ROSLI D, JONES J W J, et al. Oxygen tolerance in living radical polymerization:Investigation of mechanism and implementation in continuous flow polymerization[J]. Macromolecules, 2016, 49(18):6779-6789. doi: 10.1021/acs.macromol.6b01306
[111] CORRIGAN N, ALMASRI A, TAILLADES W, et al. Controlling molecular weight distributions through photoinduced flow polymerization[J]. Macromolecules, 2017, 50(21):8438-8448. doi: 10.1021/acs.macromol.7b01890
[112] XU J, FU C, SHANMUGAM S, et al. Synthesis of discrete oligomers by sequential PET-RAFT single-unit monomer insertion[J]. Angewandte Chemie International Edition, 2017, 56(29):8376-8383. doi: 10.1002/anie.201610223
[113] FU C, HUANG Z, HAWKER C J, et al. RAFT-mediated, visible light-initiated single unit monomer insertion and its application in the synthesis of sequence-defined polymers[J]. Polymer Chemistry, 2017, 8(32):4637-4643. doi: 10.1039/C7PY00713B
[114] FU C, XU J, KOKOTOVIC M, et al. One-pot synthesis of block copolymers by orthogonal ring-opening polymerization and PET-RAFT polymerization at ambient temperature[J]. ACS Macro Letters, 2016, 5(4):444-449. doi: 10.1021/acsmacrolett.6b00121
[115] FIGG C A, HICKMAN J D, SCHEUTZ G M, et al. Color-coding visible light polymerizations to elucidate the activation of trithiocarbonates using Eosin Y[J]. Macromolecules, 2018, 51(4):1370-1376. doi: 10.1021/acs.macromol.7b02533
[116] ANASTASAKI A, OSCHMANN B, WILLENBACHER J, et al. One-pot synthesis of ABCDE multiblock copolymers with hydrophobic, hydrophilic, and semi-fluorinated segments[J]. Angewandte Chemie International Edition, 2017, 56(46):14483-14487. doi: 10.1002/anie.201707646
[117] NIU J, LUNN D J, PUSULURI A, et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization[J]. Nature Chemistry, 2017, 9:537-545. doi: 10.1038/nchem.2713
[118] RIBELLI T G, KONKOLEWICZ D, BERNHARD S, et al. How are radicals (re)generated in photochemical ATRP[J]. Journal of the American Chemical Society, 2014, 136(38):13303-13312. doi: 10.1021/ja506379s
[119] RIBELLI T G, KONKOLEWICZ D, PAN X, et al. Contribution of photochemistry to activator regeneration in ATRP[J]. Macromolecules, 2014, 47(18):6316-6321. doi: 10.1021/ma501384q
[120] ANASTASAKI A, NIKOLAOU V, ZHANG Q, et al. Copper(Ⅱ)/tertiary amine synergy in photoinduced living radical polymerization:Accelerated synthesis of ω-functional and α, ω-heterofunctional poly(acrylates)[J]. Journal of the American Chemical Society, 2014, 136(3):1141-1149. doi: 10.1021/ja411780m
[121] FRICK E, ANASTASAKI A, HADDLETON D M, et al. Enlightening the mechanism of copper mediated photo RDRP via high-resolution mass spectrometry[J]. Journal of the American Chemical Society, 2015, 137(21):6889-6896. doi: 10.1021/jacs.5b03048
[122] ZHU C, SCHNEIDER E K, NIKOLAOU V, et al. Hydrolyzable poly[poly(ethylene glycol) methyl ether acrylate]-colistin prodrugs through copper-mediated photoinduced living radical polymerization[J]. Bioconjugate Chemistry, 2017, 28(7):1916-1924. doi: 10.1021/acs.bioconjchem.7b00242
[123] PAN X, LATHWAL S, MACK S, et al. Automated synthesis of well-defined polymers and biohybrids by atom transfer radical polymerization using a DNA synthesizer[J]. Angewandte Chemie International Edition, 2017, 56(10):2740-2743. doi: 10.1002/anie.201611567
[124] AMEDURI B, BOUTEVIN B, KOSTOV G. Fluoroelastomers:Synthesis, properties and applications[J]. Progress in Polymer Science, 2001, 26(1):105-187. doi: 10.1016/S0079-6700(00)00044-7
[125] VITALE A, BONGIOVANNI R, AMEDURI B. Fluorinated oligomers and polymers in photopolymerization[J]. Chemical Reviews, 2015, 115(16):8835-8866. doi: 10.1021/acs.chemrev.5b00120
[126] DU L, KELLY J Y, ROBERTS G W, et al. Fluoropolymer synthesis in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2009, 47(3):447-457. doi: 10.1016/j.supflu.2008.11.011
[127] IMAE T. Fluorinated polymers[J]. Current Opinion in Colloid & Interface Science, 2003, 8(3):307-314.
[128] BABUDRI F, FARINOLA G M, NASO F, et al. Fluorinated organic materials for electronic and optoelectronic applications:The role of the fluorine atom[J]. Chemical Communications, 2007(10):1003-1022. doi: 10.1039/B611336B
[129] HIRAO A, SUGIYAMA K, YOKOYAMA H. Precise synthesis and surface structures of architectural per-and semifluorinated polymers with well-defined structures[J]. Progress in Polymer Science, 2007, 32(12):1393-1438. doi: 10.1016/j.progpolymsci.2007.08.001
[130] HANSEN N M L, JANKOVA K, HVILSTED S. Fluoropolymer materials and architectures prepared by controlled radical polymerizations[J]. European Polymer Journal, 2007, 43(2):255-293. doi: 10.1016/j.eurpolymj.2006.11.016
[131] REISINGER J J, HILLMYER M A. Synthesis of fluorinated polymers by chemical modification[J]. Progress in Polymer Science, 2002, 27(5):971-1005. doi: 10.1016/S0079-6700(02)00004-7
[132] GONG H, GU Y, CHEN M Controlled/living radical polymerization of semifluorinated (meth)acrylates[J]. Synlett, 2018, 1543-1551.
[133] DISCEKICI E H, ANASTASAKI A, KAMINKER R, et al. Light-mediated atom transfer radical polymerization of semi-fluorinated (meth)acrylates:Facile access to functional materials[J]. Journal of the American Chemical Society, 2017, 139(16):5939-5945. doi: 10.1021/jacs.7b01694
[134] DISCEKICI E H, PESTER C W, TREAT N J, et al. Simple benchtop approach to polymer brush nanostructures using visible-light-mediated metal-free atom transfer radical polymerization[J]. ACS Macro Letters, 2016, 5(2):258-262. doi: 10.1021/acsmacrolett.6b00004
[135] PESTER C W, NARUPAI B, MATTSON K M, et al. Engineering surfaces through sequential stop-flow photopatterning[J]. Advanced Materials, 2016, 28(42):9292-9300. doi: 10.1002/adma.201602900
[136] OTSU T, YOSHIDA M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations:Polymer design by organic disulfides as iniferters[J]. Die Makromolekulare Chemie Rapid Communications, 1982, 3(2):127-132. doi: 10.1002/marc.1982.030030208
[137] OTSU T. Iniferter concept and living radical polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2000, 38(12):2121-2136. doi: 10.1002/(ISSN)1099-0518
[138] GONG H, ZHAO Y, SHEN X, et al. Organocatalyzed photo-controlled radical polymerization of semi-fluorinated (meth)acrylates driven by visible light[J]. Angewandte Chemie International Edition, 2018, 57:333-337. doi: 10.1002/anie.201711053
[139] QUAN Q, GONG H, CHEN M. Preparation of semifluorinated poly(meth)acrylates by improved photo-controlled radical polymerization without the use of a fluorinated RAFT agent:Facilitating surface fabrication with fluorinated materials[J]. Polymer Chemistry, 2018, 9:4161-4171. doi: 10.1039/C8PY00990B
[140] CAMBI D, BOTTECCHIA C, STRAATHOF N J W, et al. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment[J]. Chemical Reviews, 2016, 116(17):10276-10341. doi: 10.1021/acs.chemrev.5b00707
[141] SHEN X, GONG H, ZHOU Y, et al. Unsymmetrical difunctionalization of cyclooctadiene under continuous flow conditions:Expanding the scope of ring opening metathesis polymerization[J]. Chemical Science, 2018, 9:1846-1853. doi: 10.1039/C7SC04580H
[142] GU Y, KAWAMOTO K, ZHONG M, et al. Semibatch monomer addition as a general method to tune and enhance the mechanics of polymer networks via loop-defect control[J]. Proceedings of the National Academy of Sciences, 2017, 114(19):4875-4880. doi: 10.1073/pnas.1620985114
[143] CHEN M, BUCHWALD S L. Rapid and efficient trifluoromethylation of aromatic and heteroaromatic compounds using potassium trifluoroacetate enabled by a flow system[J]. Angewandte Chemie International Edition, 2013, 52(44):11628-11631. doi: 10.1002/anie.201306094
[144] CHEN M, BUCHWALD S L. Continuous-flow synthesis of 1-substituted benzotriazoles from chloronitrobenzenes and amines in a C-N Bond formation/hydrogenation/diazotization/cyclization Sequence[J]. Angewandte Chemie International Edition, 2013, 52(15):4247-4250. doi: 10.1002/anie.201300615
[145] DONG H, TANG W, MATYJASZEWSKI K. Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP[J]. Macromolecules, 2007, 40(9):2974-2977. doi: 10.1021/ma070424e
[146] DEBUIGNE A, WARNANT J, J R ME R, et al. Synthesis of novel well-defined poly(vinyl acetate)-b-poly(acrylonitrile) and derivatized water-soluble poly(vinyl alcohol)-b-poly(acrylic acid) block copolymers by cobalt-mediated radical polymerization[J]. Macromolecules, 2008, 41(7):2353-2360. doi: 10.1021/ma702341v
[147] CHEN Q, ZHANG Z, ZHOU N, et al. Copper(0)-mediated living radical polymerization of acrylonitrile at room temperature[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2011, 49(5):1183-1189. doi: 10.1002/pola.v49.5
[148] ZHONG M, KIM E K, MCGANN J P, et al. Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer[J]. Journal of the American Chemical Society, 2012, 134(36):14846-14857. doi: 10.1021/ja304352n
[149] PAN X, LAMSON M, YAN J, et al. Photoinduced metal-free atom transfer radical polymerization of acrylonitrile[J]. ACS Macro Letters, 2015, 4(2):192-196. doi: 10.1021/mz500834g
[150] NIU T, JIANG J, LI S, et al. Well-defined high-molecular-weight polyacrylonitrile formation via visible-light-induced metal-free radical polymerization[J]. Macromolecular Chemistry and Physics, 2017, 218(15):1700169. doi: 10.1002/macp.v218.15
[151] LI J, DING C, ZHANG Z, et al. Photo-induced reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylonitrile at ambient temperature:A simple system to obtain high-molecular-weight polyacrylonitrile[J]. Reactive and Functional Polymers, 2017, 113:1-5. doi: 10.1016/j.reactfunctpolym.2017.02.003
[152] LEE I-H, DISCEKICI E H, ANASTASAKI A, et al. Controlled radical polymerization of vinyl ketones using visible light[J]. Polymer Chemistry, 2017, 8(21):3351-3356. doi: 10.1039/C7PY00617A
[153] PERKOWSKI A J, YOU W, NICEWICZ D A. Visible light photoinitiated metal-free living cationic polymerization of 4-methoxystyrene[J]. Journal of the American Chemical Society, 2015, 137(24):7580-7583. doi: 10.1021/jacs.5b03733
[154] MESSINA M S, AXTELL J C, WANG Y, et al. Visible-light-induced olefin activation using 3D aromatic boron-rich cluster photooxidants[J]. Journal of the American Chemical Society, 2016, 138(22):6952-6955. doi: 10.1021/jacs.6b03568
[155] ALLUSHI A, JOCKUSCH S, YILMAZ G, et al. Photoinitiated metal-free controlled/living radical polymerization using polynuclear aromatic hydrocarbons[J]. Macromolecules, 2016, 49(20):7785-7792. doi: 10.1021/acs.macromol.6b01752
[156] AOSHIMA S, KANAOKA S. A renaissance in living cationic polymerization[J]. Chemical Reviews, 2009, 109(11):5245-5287. doi: 10.1021/cr900225g
[157] UCHIYAMA M, SATOH K, KAMIGAITO M. Cationic RAFT polymerization using ppm concentrations of organic acid[J]. Angewandte Chemie International Edition, 2015, 54(6):1924-1928. doi: 10.1002/anie.201410858
[158] UCHIYAMA M, SATOH K, KAMIGAITO M. Thioether-mediated degenerative chain-transfer cationic polymerization:A simple metal-free system for living cationic polymerization[J]. Macromolecules, 2015, 48(16):5533-5542. doi: 10.1021/acs.macromol.5b01341
[159] MICHAUDEL Q, KOTTISCH V, FORS B P. Cationic polymerization:From photoinitiation to photocontrol[J]. Angewandte Chemie International Edition, 2017, 56(33):9670-9679. doi: 10.1002/anie.201701425
[160] KOTTISCH V, MICHAUDEL Q, FORS B P. Photocontrolled interconversion of cationic and radical polymerizations[J]. Journal of the American Chemical Society, 2017, 139(31): 10665-10668. doi: 10.1021/jacs.7b06661
[161] MICHAUDEL Q, CHAUVIRE T, KOTTISCH V, et al. Mechanistic insight into the photocontrolled cationic polymerization of vinyl ethers[J]. Journal of the American Chemical Society, 2017, 139(43): 15530-15538. doi: 10.1021/jacs.7b09539
[162] CIFTCI M, YOSHIKAWA Y, YAGCI Y. Living cationic polymerization of vinyl ethers through a photoinduced radical oxidation/addition/deactivation sequence[J]. Angewandte Chemie International Edition, 2017, 56(2): 519-523. doi: 10.1002/anie.201609357
[163] BIELAWSKI C W, GRUBBS R H. Living ring-opening metathesis polymerization[J]. Progress in Polymer Science, 2007, 32(1): 1-29. doi: 10.1016/j.progpolymsci.2006.08.006
[164] MARTINEZ H, REN N, MATTA M E, et al. Ring-opening metathesis polymerization of 8-membered cyclic olefins[J]. Polymer Chemistry, 2014, 5(11): 3507-3532. doi: 10.1039/c3py01787g
[165] SCHROCK R R, HOVEYDA A H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts[J]. Angewandte Chemie International Edition, 2003, 42(38): 4592-4633. doi: 10.1002/(ISSN)1521-3773
[166] OGAWA K A, GOETZ A E, BOYDSTON A J. Metal-free ring-opening metathesis polymerization[J]. Journal of the American Chemical Society, 2015, 137(4): 1400-1403. doi: 10.1021/ja512073m
[167] GOETZ A E, BOYDSTON A J. Metal-free preparation of linear and cross-linked polydicyclopentadiene[J]. Journal of the American Chemical Society, 2015, 137(24): 7572-7575. doi: 10.1021/jacs.5b03665
[168] GOETZ A E, PASCUAL L M M, DUNFORD D G, et al. Expanded functionality of polymers prepared using metal-free ring-opening metathesis polymerization[J]. ACS Macro Letters, 2016, 5(5): 579-582. doi: 10.1021/acsmacrolett.6b00131
[169] PASCUAL L M M, DUNFORD D G, GOETZ A E, et al. Comparison of pyrylium and thiopyrylium photooxidants in metal-free ring-opening metathesis polymerization[J]. Synlett, 2016, 27(5): 759-762. doi: 10.1055/s-00000083
[170] PASCUAL L M M, GOETZ A E, ROEHRICH A M, et al. Investigation of tacticity and living characteristics of photoredox-mediated metal-free ring-opening metathesis polymerization[J]. Macromolecular Rapid Communications, 2017, 38(13): 1600766. doi: 10.1002/marc.201600766
[171] LU P, ALRASHDI N M, BOYDSTON A J. Bidirectional metal-free ROMP from difunctional organic initiators[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(18): 2977-2982. doi: 10.1002/pola.28704
[172] FENG Q, TONG R. Controlled photoredox ring-opening polymerization of O-carboxyanhydrides[J]. Journal of the American Chemical Society, 2017, 139(17): 6177-6182. doi: 10.1021/jacs.7b01462
[173] AL MOUSAWI A, KERMAGORET A, VERSACE D L, et al. Copper photoredox catalysts for polymerization upon near UV or visible light: Structure/reactivity/efficiency relationships and use in LED projector 3D printing resins[J]. Polymer Chemistry, 2017, 8(3): 568-580. doi: 10.1039/C6PY01958G
[174] MOKBEL H, ANDERSON D, PLENDERLEITH R, et al. Copper photoredox catalyst "G1": A new high performance photoinitiator for near-UV and visible LEDs[J]. Polymer Chemistry, 2017, 8(36): 5580-5592. doi: 10.1039/C7PY01016H
[175] AY E, RAAD Z, DAUTEL O, et al. Oligomeric photocatalysts in photoredox catalysis: Toward high performance and low migration polymerization photoinitiating systems[J]. Macromolecules, 2016, 49(6): 2124-2134. doi: 10.1021/acs.macromol.5b02760