[1] GOUDIE M J, PANT J, HANDA H. Liquid-infused nitric oxide-releasing (LINORel) silicone for decreased fouling, thrombosis, and infection of medical devices [J]. Scientific Reports,2017,7(1):3858-3866. doi: 10.1038/s41598-017-04202-w
[2] MAITZ M F, MARTINS M C L, GRABOW N, et al. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions [J]. Acta Biomaterialia,2019,94:33-43. doi: 10.1016/j.actbio.2019.06.019
[3] JAFFER I H, WEITZ J I. The blood compatibility challenge. Part 1: Blood-contacting medical devices: The scope of the problem [J]. Acta Biomaterialia,2019,94:2-10. doi: 10.1016/j.actbio.2019.06.021
[4] PARADA G, YU Y, RILEY W, et al. Ultrathin and robust hydrogel coatings on cardiovascular medical devices to mitigate thromboembolic and infectious complications [J]. Advanced Healthcare Materials,2020,9:2001116. doi: 10.1002/adhm.202001116
[5] FU X, NING J P. Synthesis and biocompatibility of an argatroban-modified polysulfone membrane that directly inhibits thrombosis [J]. Journal of Materials Science: Materials in Medicine,2018,29(5):1-20.
[6] BRASH J L, HORBETT T A, LATOUR R A, et al. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity [J]. Acta Biomaterialia,2019,94:11-24. doi: 10.1016/j.actbio.2019.06.022
[7] JIA E, ZHAO X, LIN Y, et al. Protein adsorption on titanium substrates and its effects on platelet adhesion [J]. Applied Surface Science,2020,529:146986. doi: 10.1016/j.apsusc.2020.146986
[8] PERIAYAH M H, HALIM A S, MAT S A Z. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis [J]. International Journal of Hematology: Oncology and Stem Cell Research,2017,11(4):319-327.
[9] MAJOR T C, BRISBOIS E J, JONES A M, et al. The effect of a polyurethane coating incorporating both a thrombin inhibitor and nitric oxide on hemocompatibility in extracorporeal circulation [J]. Biomaterials,2014,35(24):7271-7285.
[10] GORBET M, SPERLING C, MAITZ M F, et al. The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells [J]. Acta Biomaterialia,2019,94:25-32. doi: 10.1016/j.actbio.2019.06.020
[11] COLACE T V, TORMOEN G W, MCCARTY O J T, et al. Microfluidics and coagulation biology [J]. Annual Review of Biomedical Engineering,2013,15:283-303. doi: 10.1146/annurev-bioeng-071812-152406
[12] MIHARA K, RAMACHANDRAN R, SAIFEDDINE M, et al. Thrombin-mediated direct activation of proteinase-activated receptor-2: Another target for thrombin signaling [J]. Molecular Pharmacology,2016,89(5):606-614. doi: 10.1124/mol.115.102723
[13] JAFFER I H, FREDENBURGH J C, HIRSH J, et al. Medical device-induced thrombosis: What causes it and how can we prevent it? [J]. Journal of Thrombosis and Haemostasis,2015,13(S1):S72-S81.
[14] BADV M, BAYAT F, WEITZ J I, et al. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants [J]. Biomaterials,2020,258:120291. doi: 10.1016/j.biomaterials.2020.120291
[15] CHENG D, WEN Y B, WANG L J, et al. Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity [J]. Carbohydrate Polymers,2015,123:157-163. doi: 10.1016/j.carbpol.2015.01.035
[16] ULBRICHT M, MATUSCHEWSKI H, OECHEL A, et al. Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-proten-adsorbing ultrafiltration membranes [J]. Journal of Membrane Science,1996,115(1):31-47. doi: 10.1016/0376-7388(95)00264-2
[17] LIN Y S, HLADY V, GOLANDER C G. The surface density gradient of grafted poly(ethylene glycol): Preparation, characterization and protein adsorption [J]. Colloids and Surfaces B: Biointerfaces,1994,3(1-2):49-62. doi: 10.1016/0927-7765(93)01114-7
[18] JO S, PARK K. Surface modification using silanated poly(ethylene glycol)s [J]. Biomaterials,2000,21(6):605-616. doi: 10.1016/S0142-9612(99)00224-0
[19] MELCHIORRI A J, HIBINO N, FISHER J P. Strategies and techniques to enhance the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts [J]. Tissue Engineering Part B: Reviews,2013,19(4):292-307. doi: 10.1089/ten.teb.2012.0577
[20] HANSSON K M, TOSATTI S, ISAKSSON J, et al. Whole blood coagulation on protein adsorption-resistant PEG and peptide functionalised PEG-coated titanium surfaces [J]. Biomaterials,2005,26(8):861-872. doi: 10.1016/j.biomaterials.2004.03.036
[21] KOVACH K M, CAPADONA J R, GUPTA A S, et al. The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility [J]. Journal of Biomedical Materials Research Part A,2014,102(12):4195-4205.
[22] MATSUBARA T, ZIFF M. Increased superoxide anion release from human endothelial cells in response to cytokines [J]. The Journal of Immunology,1986,137(10):3295-3298.
[23] SHEN M C, PAN Y V, MATTHEW S W, et al. Inhibition of monocyte adhesion and fibrinogen adsorption on glow discharge plasma deposited tetraethylene glycol dimethyl ether [J]. Journal of Biomaterials Science: Polymer Edition,2001,12(9):961-978. doi: 10.1163/156856201753252507
[24] ISHIHARA K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices [J]. Langmuir,2019,35(5):1778-1787. doi: 10.1021/acs.langmuir.8b01565
[25] FREDENBURGH J C, GROSS P L, WEITZ J I. Emerging anticoagulant strategies [J]. Blood,2017,129(2):147-154. doi: 10.1182/blood-2016-09-692996
[26] CHEN X, TAGUCHI T. Hydrophobically modified poly(vinyl alcohol)s as antithrombogenic coating materials [J]. Materials Science and Engineering C,2019,102:289-298. doi: 10.1016/j.msec.2019.04.059
[27] SMITH R S, ZHANG Z, BOUCHARD M, et al. Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment [J]. Science Transiational Medicine,2012,4(153):153ra132.
[28] ALEXANDER K E, WONG T S, REBECCA A, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance [J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(33):13182-13187. doi: 10.1073/pnas.1201973109
[29] LESLIE D C, WATERHOUSE A, BERTHET J B, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling [J]. Nature Biotechnology,2014,32(11):1134-1140. doi: 10.1038/nbt.3020
[30] WONG T S, KANG S H, TANG S K, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity [J]. Nature,2011,477(7365):443-447. doi: 10.1038/nature10447
[31] XIAO L L, LI J S, MIESZKIN S, et al. Slippery liquid-infused porous surfaces showing marine antibiofouling properties [J]. ACS Applied Materials & Interfaces,2013,5(20):10074-10080.
[32] MAGHSOUDI K, VAZIRINASAB E, MOMEN G, et al. Icephobicity and durability assessment of superhydrophobic surfaces: The role of surface roughness and the ice adhesion measurement technique [J]. Journal of Materials Processing Technology,2021,288:116883. doi: 10.1016/j.jmatprotec.2020.116883
[33] 何斌, 罗祥林, 钟银屏, 等. 医用高分子材料表面的润滑改性进展 [J]. 功能高分子学报,1999,12(3):320-324.HE B, LUO X L, ZHONG Y P, et al. Study on the surface lubrication modification of biomedical polymer materials [J]. Journal of Functional Polymers,1999,12(3):320-324.
[34] WANG Z, TAN W S, YE X, et al. Preparation of anticoagulant PyC biomaterials with super-hydrophobic surface [J]. Journal of Applied Biomaterials & Functional Materials,2018,16(1):125-131.
[35] YUAN S S, LUAN S F, YAN S J, et al. Facile fabrication of lubricant-infused wrinkling surface forpreventing thrombus formation and infection [J]. ACS Applied Materials & Interfaces,2015,7(34):19466-19473.
[36] JOKINEN V, KANKURI E, HOSHIAN S, et al. Superhydrophobic blood-repellent surfaces [J]. Advanced Materials,2018,30(24):1705104. doi: 10.1002/adma.201705104
[37] 计剑, 邱永兴, 俞小洁, 等. 抗凝血聚氨酯材料的研究进展 [J]. 功能高分子学报,1995,8(2):225-235.JI J, QIU Y X, YU X J, et al. Antithrombogenic polyurethane [J]. Journal of Functional Polymers,1995,8(2):225-235.
[38] FENG Y K, TIAN H, TAN M Q, et al. Surface modification of polycarbonate urethane by covalent linkage of heparin with a PEG spacer [J]. Transactions of Tianyin University,2013,19(1):58-65. doi: 10.1007/s12209-013-1894-y
[39] CESTARI M, MULLER V, RODRIGUES J H, et al. Surface modification of polycarbonate urethane bycovalent linkage of heparin with a PEG spacer [J]. Biomacromolecules,2014,15(5):1762-1767. doi: 10.1021/bm500132g
[40] 刘鹏, 陈亚芍, 张丽惠. 聚氯乙烯表面共价键合肝素及抗凝血性的研究 [J]. 功能高分子学报,2004,17(1):35-40.LIU P,CHEN Y S,ZHANG L H. Study of covalent immobilization of heparin onto the surface of poly(vinyl chloride) for antithrombogenicity [J]. Journal of Functional Polymers,2004,17(1):35-40.
[41] QU Z, MUTHUKRISHNAN S, URLAM L K, et al. A biologically active surface enzyme assembly that attenuates thrombus formation [J]. Advanced Functional Materials,2011,21(24):4736-4743. doi: 10.1002/adfm.201101687
[42] LUO R, ZHANG J, ZHUANG W H, et al. Multifunctional coatings that mimic the endothelium: Surface bound active heparin nanoparticles with in situ generation of nitric oxide from nitrosothiols [J]. Journal of Materials Chemistry B,2018,6(35):5582-5595. doi: 10.1039/C8TB00596F
[43] YANG T, DU Z Y, QIU H, et al. From surface to bulk modification: Plasma polymerization of amine-bearing coating by synergic strategy of biomolecule grafting and nitric oxide loading [J]. Bioactive Materials,2020,5(1):17-25. doi: 10.1016/j.bioactmat.2019.12.006
[44] QIU H, QI P K, LIU J X, et al. Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy [J]. Biomaterials,2019,207:10-22. doi: 10.1016/j.biomaterials.2019.03.033
[45] OTSUKA F, FINN A V, YAZDANI S K, et al. The importance of the endothelium in atherothrombosisand coronary stenting [J]. Nature Reviews Cardiology,2012,9(8):439-453. doi: 10.1038/nrcardio.2012.64
[46] CHEN H, WANG X, ZHOU Q, et al. Preparation of vascular endothelial cadherin loaded-amphotericcopolymer decorated coronary stents for anticoagulation and endothelialization [J]. Langmuir,2017,33(46):13430-13437. doi: 10.1021/acs.langmuir.7b03064
[47] ZHENG W W, LIU M, QI H S, et al. Mussel-inspired triblock functional protein coating with endothelial cell selectivity for endothelialization [J]. Journal of Colloid and Interface Science,2020,576:68-78. doi: 10.1016/j.jcis.2020.04.116
[48] NOURHAN H, GREVE B, ESPINOZA N A, et al. Mussel-inspired triblock functional protein coating with endothelial cell selectivity for endothelialization [J]. Cellular Signalling,2021,77:109822. doi: 10.1016/j.cellsig.2020.109822
[49] MOVAFAGHI S, WANG W, BARK D L, et al. Hemocompatibility of super-repellent surfaces: Currentand future [J]. Materials Horizons,2019,6(8):1596-1610. doi: 10.1039/C9MH00051H
[50] LIN Q, YAN J, QIU F, et al. Heparin/collagen multilayer as a thromboresistant and endothelial favorablecoating for intravascular stent [J]. Journal of Biomedical Materials Research Part A,2011,96A(1):132-141. doi: 10.1002/jbm.a.32820
[51] LI X, GAO P, TAN J Y, et al. Assembly of metal-phenolic/catecholamine networks for synergisticallyanti-inflammatory, antimicrobial, and anticoagulant coatings [J]. ACS Applied Materials & Interfaces,2018,10(47):40844-40853.