[1] RIVIN D, MEERMEIER G, SCHNEIDER N S, et al. Simultaneous transport of water and organic molecules through polyelectrolyte membranes [J]. Journal of Physical Chemistry B,2004,108(26):8900-8909. doi: 10.1021/jp037448h
[2] SCHNEIDER N S, RIVIN D. Interaction of dimethyl methylphosphonate with Nafion in acid and cation modifications [J]. Polymer,2004,45(18):6309-6320. doi: 10.1016/j.polymer.2004.05.023
[3] SCHNEIDER N S, RIVIN D. Solvent transport in hydrocarbon and perfluorocarbon ionomers [J]. Polymer,2006,47(9):3119-3131. doi: 10.1016/j.polymer.2006.02.068
[4] JUNG K H, POURDEYHIMI B, ZHANG X W. Chemical protection performance of polystyrene sulfonic acid-filled polypropylene nonwoven membranes [J]. Journal of Membrane Science,2010,362:137-142. doi: 10.1016/j.memsci.2010.06.031
[5] SULEIMAN D, CARRERAS G, SOTO Y. Effect of block composition, size and functionality of poly(styrene-isobutylene-styrene) copolymers [J]. Journal of Applied Polymer Science,2013,128(4):2297-2306. doi: 10.1002/app.38154
[6] SULEIMAN D, PADOVANI A, NEGRON A A, et al. Mechanical and chemical properties of poly(styrene- isobutylenestyrene) block copolymers: Effect of sulfonation and counter ion substitution [J]. Journal of Applied Polymer Science,2014,131(11):40344-40352.
[7] RUIZ-COLON E, PEREZ-PEREZ M, SULEIMAN D. Synthesis and characterization of novel phosphonated and sulfonated poly(styrene-isobutylene-styrene) for fuel cell and protective clothing applications [J]. Journal of Polymer Science Part A: Polymer Chemistry,2018,56(13):1424-1435. doi: 10.1002/pola.29023
[8] RUIZ-COLON E, PEREZ-PEREZ M, SULEIMAN D. Influence of carboxylated and phosphonated single-walled carbon nanotubes on the transport properties of sulfonated poly(styrene-isobutylene-styrene) membranes [J]. Journal of Polymer Science Part A: Polymer Chemistry,2018,56(21):2475-2495. doi: 10.1002/pola.29222
[9] RUIZ-COLON E, PEREZ-PEREZ M, SULEIMAN D. Transport properties of blended sulfonated poly(styrene-isobutylene-styrene) and isopropyl phosphate membranes [J]. Journal of Applied Polymer Science,2019,136(5):47009-47025. doi: 10.1002/app.47009
[10] VISHNYAKOV A, NEIMARK A V. Molecular dynamics simulation of nanoscale distribution and mobility of water and dimethylmethylphosphonate in sulfonated polystyrene [J]. Journal of Physical Chemistry B,2008,112(47):14905-14910. doi: 10.1021/jp802256q
[11] LIU Y, HOWARTH A J, VERMEULEN N A, et al. Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks [J]. Coordination Chemistry Reviews,2017,346:101-111. doi: 10.1016/j.ccr.2016.11.008
[12] GUTCH P K, SRIVASTAVA R K, SEKHAR K. Polymeric decontaminant 2(N, N-dichloropolystyrene sulfonamide): Synthesis, characterization, and efficacy against simulant of sulfur mustard [J]. Journal of Applied Polymer Science,2008,107(6):4109-4115. doi: 10.1002/app.27636
[13] CHOI J, MOON D S, RYU S G, et al. N-chloro hydantoin functionalized polyurethane fibers toward protective cloth against chemical warfare agents [J]. Polymer,2018,138:146-155. doi: 10.1016/j.polymer.2018.01.066
[14] BROMBERG L, SCHREUDER-GIBSON H, CREASY W R, et al. Degradation of chemical warfare agents by reactive polymers [J]. Industrial & Engineering Chemistry Research,2009,48(3):1650-1659.
[15] CHEN L, BROMBERG L, SCHREUDER-GIBSON H, et al. Chemical protection fabrics via surface oximation of electrospun polyacrylonitrile fiber mats [J]. Journal of Materials Chemistry,2009,19(16):2432-2438. doi: 10.1039/b818639a
[16] KAUR B, MCBRIDE S P, PAUL A, et al. Hydrolysis of p-nitrophenyl esters promoted by semifluorinated quaternary ammonium polymer latexes and films [J]. Langmuir,2010,26(20):15779-15785. doi: 10.1021/la1024982
[17] MARCIANO D, GOLDVASER M, COLUMBUS I, et al. Catalytic degradation of the nerve agent VX by water-swelled polystyrene-supported ammonium fluorides [J]. Journal of Organic Chemistry,2011,76(20):8549-8553. doi: 10.1021/jo201600d
[18] WANG H, WAGNER G W, LU A X, et al. Photocatalytic oxidation of sulfur mustard and its simulant on BODIPY-incorporated polymer coatings and fabrics [J]. ACS Applied Materials & Interfaces,2018,10(22):18771-18777.
[19] AVILES-BARRETO S L, SULEIMAN D. Effect of single-walled carbon nanotubes on the transport properties of sulfonated poly(styrene-isobutylene-styrene) membranes [J]. Journal of Membrane Science,2015,474:92-102. doi: 10.1016/j.memsci.2014.09.049
[20] LAINIOTI G C, BOUNOS G, VOYIATZIS G A, et al. Enhanced water vapor transmission through porous membranes based on melt blending of polystyrene sulfonate with polyethylene copolymers and their CNT nanocomposites [J]. Polymers,2016,8(5):190-240. doi: 10.3390/polym8050190
[21] BUI N, MESHOT E R, KIM S, et al. Ultrabreathable and protective membranes with Sub-5 nm carbon nanotube pores [J]. Advanced Materials,2016,28(28):5871-2877. doi: 10.1002/adma.201600740
[22] BUNCH J S, VERBRIDGE S, ALDEN J S, et al. Impermeable atomic membranes from graphene sheets [J]. Nano Letters,2008,8(8):2458-2462. doi: 10.1021/nl801457b
[23] NAIR R R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes [J]. Science,2012,335(6067):442-444. doi: 10.1126/science.1211694
[24] SU Y, KRAVETS V G, WONG S L, et al. Impermeable barrier films and protective coatings based on reduced graphene oxide [J]. Nature Communications,2014,5(1):4843-4848. doi: 10.1038/ncomms5843
[25] STEINBERG R S, CRUZ M, MAHFOUZ N G A, et al. Breathable vapor toxicant barriers based on multilayer graphene oxide [J]. Acs Nano,2017,11(6):5670-5679. doi: 10.1021/acsnano.7b01106
[26] CHEN P Y, ZHANG M, LIU M, et al. Ultrastretchable graphene-based molecular barriers for chemical protection, detection, and actuation [J]. ACS Nano,2018,12(1):234-244. doi: 10.1021/acsnano.7b05961
[27] FARHA O K, ERYAZICI I, JEONG N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? [J]. Journal of the American Chemical Society,2012,134(36):15016-15021. doi: 10.1021/ja3055639
[28] FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metal-organic frameworks [J]. Science,2010,329(5990):424-428. doi: 10.1126/science.1192160
[29] KATZ M J, MONDLOCH J E, TOTTEN R K, et al. Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants [J]. Angew Chem,2014,126:507-511. doi: 10.1002/ange.201307520
[30] ZOU R, ZHONG R, HAN S, et al. A porous metal-organic replica of α-PbO2 for capture of nerve agent surrogate [J]. Journal of the American Chemical Society,2010,132(51):17996-17999. doi: 10.1021/ja101440z
[31] MA F J, LIU S X, SUN C Y, et al. A sodalite-type porous metal-organic framework with polyoxometalate templates: Adsorption and decomposition of dimethyl methylphosphonate [J]. Journal of the American Chemical Society,2011,133(12):4178-4181. doi: 10.1021/ja109659k
[32] BROMBERG L, KLICHKO Y, CHANG E P, et al. Alkylaminopyridine-modified aluminum aminoterephthalate metal-organic frameworks as components of reactive self-detoxifying materials [J]. ACS Applied Materials and Interfaces,2012,4(9):4595-4602. doi: 10.1021/am3009696
[33] ROY A, SRIVASTAVA A K, SINGH B, et al. Kinetics of degradation of sulfur mustard and sarin simulants on HKUST-1 metal organic framework [J]. Dalton Transactions,2012,41(40):12346-12348. doi: 10.1039/c2dt31888a
[34] LÕPEZ-MAYA E, MONTORO C, RODRÍGUEZ-ALBELO L M, et al. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents [J]. Angewandte Chemie: International Edition,2015,54(23):6790-6794. doi: 10.1002/anie.201502094
[35] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. Journal of the American Chemical Society,2008,130(42):13850-13851. doi: 10.1021/ja8057953
[36] WANG C, XIE Z, DEKRAFFT K E, et al. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis [J]. Journal of the American Chemical Society,2011,133(34):13445-13454. doi: 10.1021/ja203564w
[37] HOWARTH A J, LIU Y, LI P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks [J]. Nature Reviews Materials,2016,1(3):15018-15033. doi: 10.1038/natrevmats.2015.18
[38] BAI Y, DOU Y, XIE L, et al. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications [J]. Chemical Society Reviews,2016,45(8):2327-2367. doi: 10.1039/C5CS00837A
[39] CENTRONE A, YANG Y, SPEAKMAN S, et al. Growth of metal-organic frameworks on polymer surfaces [J]. Journal of the American Chemical Society,2010,132(44):15687-15691. doi: 10.1021/ja106381x
[40] KÜSGENS P, SIEGLE S, KASKEL S. Crystal growth of the metal-organic framework Cu3(BTC)2 on the surface of pulp fibers [J]. Advanced Engineering Materials,2009,11(1-2):93-95. doi: 10.1002/adem.200800274
[41] LI M, DINCǍ M. Reductive electrosynthesis of crystalline metal-organic frameworks [J]. Journal of the American Chemical Society,2011,133(33):12926-12929. doi: 10.1021/ja2041546
[42] ROSE M, BÖHRINGER B, JOLLY M, et al. MOF processing by electrospinning for functional textiles [J]. Advanced Engineering Materials,2011,13(4):356-360. doi: 10.1002/adem.201000246
[43] DWYER D B, DUGAN N, HOFFMAN N, et al. Chemical protective textiles of UiO-66-integrated PVDF composite fibers with rapid heterogeneous decontamination of toxic organophosphates [J]. ACS Applied Materials & Interfaces,2018,10(40):34585-34591.
[44] KATZ M J, MOON S Y, MONDLOCH J E, et al. Exploiting parameter space in MOF: A 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2 [J]. Chemical Science,2015,6(4):2286-2291. doi: 10.1039/C4SC03613A
[45] JANG Y J, KIM K, TSAY O G, et al. Update 1 of: Destruction and detection of chemical warfare agents [J]. Chemical Reviews,2015,115(24):1-76. doi: 10.1021/acs.chemrev.5b00402
[46] MOON S Y, WAGNER G W, MONDLOCH J E, et al. Effective, Facile, and selective hydrolysis of the chemical warfare agent VX using Zr6-based metal-organic frameworks [J]. Inorganic Chemistry,2015,54(22):10829-10833. doi: 10.1021/acs.inorgchem.5b01813
[47] MONDLOCH J E, KATZ M J, ISLEY W C, et al. Destruction of chemical warfare agents using metal-organic frameworks [J]. Nature Materials,2015,14(5):512-516. doi: 10.1038/nmat4238
[48] LIU Y, BURU C T, HOWARTH A J, et al. Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework [J]. Journal of Materials Chemistry A,2016,4(36):13809-13813. doi: 10.1039/C6TA05903A
[49] ISLAMOGLU T, ORTUNO M A, PROUSSALOGLOU E, et al. Presence versus proximity: The role of pendant amines in the catalytic hydrolysis of a nerve agent simulant [J]. Angewandte Chemie: International Edition,2018,57(7):1949-1953. doi: 10.1002/anie.201712645
[50] MOON S Y, LIU Y, HUPP J T, et al. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework [J]. Angewandte Chemie: International Edition,2015,54(23):6795-6799. doi: 10.1002/anie.201502155
[51] LIU Y, MOON S Y, HUPP J T, et al. Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants [J]. ACS Nano,2015,9(12):12358-12364. doi: 10.1021/acsnano.5b05660
[52] LIU Y, HOWARTH A J, HUPP J T, et al. Selective photooxidation of a mustard-gas simulant catalyzed by a porphyrinic metal-organic framework [J]. Angewandte Chemie: International Edition,2015,54(31):9001-9005. doi: 10.1002/anie.201503741
[53] PETERSON G W, BROWE M A, DURKE E, et al. Flexible SIS/HKUST-1 mixed matrix composites as protective barriers against chemical warfare agent simulants [J]. ACS Applied Materials & Interfaces,2018,10(49):43080-43087.
[54] BUNGE M A, DAVIS A B, WEST K N, et al. Synthesis and characterization of UiO-66-NH2 metal-organic framework cotton composite textiles [J]. Industrial & Engineering Chemistry Research,2018,57(28):9151-9161.
[55] ZHAO J, NUNN W T, LEMAIRE P C, et al. Facile conversion of hydroxy double salts to metal-organic frameworks using metal oxide particles and atomic layer deposition thin-film templates [J]. Journal of the American Chemical Society,2015,137(43):13756-13759. doi: 10.1021/jacs.5b08752
[56] DWYER D B, LEE D T, BOYER S, et al. Toxic organophosphate hydrolysis using nanofiber-templated UiO-66-NH2 metal-organic framework polycrystalline cylinders [J]. ACS Applied Materials & Interfaces,2018,10(30):25794-25803.
[57] KALAJ M, DENNY M, BENTZ K, et al. Nylon-MOF composites via postsynthetic polymerization [J]. Angewandte Chemie: International Edition,2018,58(8):2336-2340.
[58] PETERSON G W, LU A X, HALL M G, et al. MOFwich: Sandwiched metal-organic framework-containing mixed matrix composites for chemical warfare agent removal [J]. ACS Applied Materials & Interfaces,2018,10(8):6820-6824.
[59] MIZRAHI D M, SAPHIER S, COLUMBUS I. Efficient heterogeneous and environmentally friendly degradation of nerve agents on a tungsten-based POM [J]. Journal of Hazardous Materials,2010,179(1-3):495-499. doi: 10.1016/j.jhazmat.2010.03.030
[60] DONG J, HU J, CHI Y, et al. A Polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants [J]. Angewandte Chemie: International Edition,2017,56(16):4473-4477. doi: 10.1002/anie.201700159
[61] HOU Y, AN H, ZHANG Y, et al. Rapid destruction of two types of chemical warfare agent simulants by hybrid polyoxomolybdates modified by carboxylic acid ligands [J]. ACS Catalysis,2018,8(7):6062-6069. doi: 10.1021/acscatal.8b00972
[62] 杨海宽, 吴涵, 王维. 多金属氧酸盐簇-聚合物杂化功能材料的研究进展 [J]. 功能高分子学报,2016,29(1):1-19.
[63] POPA A M, HU L, CRESPY D, et al. Polyoxomolybdate-based selective membranes for chemical protection [J]. Journal of Membrane Science,2011,373(1-2):196-201. doi: 10.1016/j.memsci.2011.03.015
[64] WU K H, YU P Y, YANG C C, et al. Preparation and characterization of polyoxometalate-modified poly(vinyl alcohol)/polyethyleneimine hybrids as a chemical and biological self-detoxifying material [J]. Polymer Degradation and Stability,2009,94(9):1411-1418. doi: 10.1016/j.polymdegradstab.2009.05.009
[65] LIU F, LU Q, JIAO X, et al. Fabrication of Nylon-6/POM nanofibrous membranes and the degradation of mustard stimulant research [J]. RSC Advances,2014,4(78):41271-41276. doi: 10.1039/C4RA06800A
[66] ALLEN N E, OBENDORF S K, FAN J. Polyoxometalate (POM) grafted grooved nanofibrous membranes for improved self-decontamination [J]. RSC Advances,2016,6(89):85985-85993. doi: 10.1039/C6RA04456E
[67] DONG J, LV H, SUN X, et al. A versatile self-detoxifying material based on immobilized polyoxoniobate for decontamination of chemical warfare agent simulants [J]. Chemistry,2018,24(72):19208-19215.
[68] RYU S Y, CHUNG J W, KWAK S Y. Tunable multilayer assemblies of nanofibrous composite mats as permeable protective materials against chemical warfare agents [J]. RSC Advances,2017,7(16):9964-9974. doi: 10.1039/C6RA23826B
[69] SUNDARRAJAN S, CHANDRASEKARAN A R, RAMAKRISHNA S. An update on nanomaterials-based textiles for protection and decontamination [J]. Journal of the American Ceramic Society,2010,93(12):3955-3975. doi: 10.1111/j.1551-2916.2010.04117.x
[70] HAN D, FILOCAMO S, KIRBY R, et al. Deactivating chemical agents using enzyme-coated nanofibers formed by electrospinning [J]. ACS Applied Materials & Interfaces,2011,3(12):4633-4639.