[1] OKAMOTO Y, SUZUKI K, OHTA K, et al. Optically-active poly(triphenylmethyl methacrylate) with one-handed helical conformation [J]. Journal of the American Chemical Society,1979,101(16):4763-4765. doi: 10.1021/ja00510a072
[2] YUKI H, OKAMOTO Y, OKAMOTO I, et al. Resolution of racemic compounds by optically-active poly(triphenylmethyl methacrylate) [J]. Journal of the American Chemical Society,1980,102(20):6356-6358. doi: 10.1021/ja00540a039
[3] NAKANO T, OKAMOTO Y. Synthetic helical polymers: Conformation and function [J]. Chemical Reviews,2001,101(12):4013-4038. doi: 10.1021/cr0000978
[4] YASHIMA E, MAEDA K, IIDA H, et al. Helical polymers: Synthesis, structures, and functions [J]. Chemical Reviews,2009,109(11):6102-6211. doi: 10.1021/cr900162q
[5] YIN L, MIAO T F, CHENG X X, et al. Research advance in photoinduced chirality of achiral polymers [J]. Journal of Functional Polymers,2018,31(5):387-401.
[6] YU Z N, WAN X H, ZHANG H, et al. A free radical initiated optically active polymer with memory of chirality after removal of the inducing stereogenic centers [J]. Chemical Communications,2003(8):974-975. doi: 10.1039/b212916g
[7] KOUWER P H, NOLTE R J, ROWAN A E, et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels [J]. Nature,2013,493(7434):651-655. doi: 10.1038/nature11839
[8] CORLEY L S, VOGL O. Haloaldehyde polymers: 11. Optically-active polychloral [J]. Polymer Bulletin,1980,3(4):211-217. doi: 10.1007/BF00291959
[9] SUZUKI N, FUJIKI M, KOE J R, et al. Chiroptical inversion in helical Si―Si bond polymer aggregates [J]. Journal of the American Chemical Society,2013,135(35):13073-13079. doi: 10.1021/ja405570q
[10] GREEN M M, GROSS R A, SCHILLING F C, et al. Macromolecular stereochemistry-effect of pendant group-structure on the conformational properties of polyisocyanides [J]. Macromolecules,1988,21(6):1839-1846. doi: 10.1021/ma00184a051
[11] MILLICH F, BAKER G K. Polyisonitriles: 3. Synthesis and racemization of optically active poly(alpha-phenylethylisonitrile) [J]. Macromolecules,1969,2(2):122-128. doi: 10.1021/ma60008a003
[12] NOLTE R J M, VANBEIJNEN A J M, DRENTH W. Chirality in polyisocyanides [J]. Journal of the American Chemical Society,1974,96(18):5932-5933. doi: 10.1021/ja00825a038
[13] REUTHER J F, NOVAK B M. Evidence of entropy-driven bistability through 15N-NMR analysis of a temperature- and solvent-induced, chiroptical switching polycarbodiimide [J]. Journal of the American Chemical Society,2013,135(51):19292-19303. doi: 10.1021/ja4098803
[14] HECHT S, HUC I. Foldamers: Structure, Properties and Applications [M]. Weinheim: John Wiley & Sons, 2007.
[15] GELLMAN S H. Foldamers: A manifesto [J]. Accounts of Chemical Research,1998,31(4):173-180. doi: 10.1021/ar960298r
[16] YANG X W, YUAN L H, YAMATO K, et al. Backbone-rigidified oligo(m-phenylene ethynylenes) [J]. Journal of the American Chemical Society,2004,126(10):3148-3162. doi: 10.1021/ja039416d
[17] BING G. Hollow crescents, helices, and macrocycles from enforced folding and folding-assisted macrocyclization [J]. Accounts of Chemical Research,2008,41(10):1376-1386. doi: 10.1021/ar700266f
[18] GUICHARD G, HUC I. Synthetic foldamers [J]. Chemical Communications,2011,47(21):5933-5941. doi: 10.1039/c1cc11137j
[19] MOORE J S, GORMAN C B, GRUBBS R H. Soluble. Chiral polyacetylenes-syntheses and investigation of their solution conformation [J]. Journal of the American Chemical Society,1991,113(5):1704-1712. doi: 10.1021/ja00005a039
[20] ZENG C, ZHANG C Y, ZHU J Y, et al. Supramolecular polymerization driven by the dimerization of single-stranded helix to double-stranded helix [J]. Chinese Journal of Polymer Science,2018,36(3):261-265. doi: 10.1007/s10118-018-2058-2
[21] HUC I. Aromatic oligoamide foldamers [J]. European Journal of Organic Chemistry,2004,2004(1):17-29. doi: 10.1002/ejoc.200300495
[22] FERRAND Y, HUC I. Designing helical molecular capsules based on folded aromatic amide oligomers [J]. Accounts of Chemical Research,2018,51(4):970-977. doi: 10.1021/acs.accounts.8b00075
[23] GONG B. Crescent oligoamides: From acyclic macrocycles to folding nanotubes [J]. Chemistry: A European Journal,2001,7(20):4336-4342. doi: 10.1002/1521-3765(20011015)7:20<4336::AID-CHEM4336>3.0.CO;2-1
[24] JIANG H, LEGER J M, HUC I. Aromatic delta-peptides [J]. Journal of the American Chemical Society,2003,125(12):3448-3449. doi: 10.1021/ja029887k
[25] LI C, REN S F, HOU J L, et al. F···H―N Hydrogen bonding driven foldamers: Efficient receptors for dialkylammonium ions [J]. Angewandte Chemie International Edition,2005,44(35):5725-5729. doi: 10.1002/anie.200500982
[26] LI Z T, HOU J L, LI C. Peptide mimics by linear arylamides: A structural and functional diversity test [J]. Accounts of Chemical Research,2008,41(10):1343-1353. doi: 10.1021/ar700219m
[27] HU Z Q, HU H Y, CHEN C F. Phenanthroline dicarboxamide-based helical foldamers: Stable helical structures in methanol [J]. The Journal of Organic Chemistry,2006,71(3):1131-1138. doi: 10.1021/jo052222r
[28] HU H Y, XIANG J F, YANG Y, et al. A helix-turn-helix supersecondary structure based on oligo(phenanthroline dicarboxamide)s [J]. Organic Letters,2008,10(1):69-72. doi: 10.1021/ol702720q
[29] SINGLETON M L, PIROTTE G, KAUFFMANN B, et al. Increasing the size of an aromatic helical foldamer cavity by strand intercalation [J]. Angewandte Chemie International Edition,2014,53(48):13140-13144. doi: 10.1002/anie.201407752
[30] HU X, DAWSON S J, MANDAL P K, et al. Optimizing side chains for crystal growth from water: A case study of aromatic amide foldamers [J]. Chemical Science,2017,8(5):3741-3749. doi: 10.1039/C7SC00430C
[31] YAN T F, YANG F H, QI S W, et al. Supramolecular nanochannels self-assembled by helical pyridine -pyridazine oligomers [J]. Chemical Communications,2019,55(17):2509-2512. doi: 10.1039/C8CC10098E
[32] FERGUSON J S, YAMATO K, LIU R, et al. One-pot formation of large macrocycles with modifiable peripheries and internal cavities [J]. Angewandte Chemie International Edition,2009,48(17):3150-3154. doi: 10.1002/anie.200900584
[33] HOU J L, SHAO X B, CHEN G J, et al. Hydrogen bonded oligohydrazide foldamers and their recognition for saccharides [J]. Journal of the American Chemical Society,2004,126(39):12386-12394. doi: 10.1021/ja047436p
[34] CAI W, WANG G T, XU Y X, et al. Vesicles and organogels from foldamers: A solvent-modulated self-assembling process [J]. Journal of the American Chemical Society,2008,130(22):6936-6937. doi: 10.1021/ja801618p
[35] HU T, CONNOR A L, MILLER D P, et al. Helical folding of meta-connected aromatic oligoureas [J]. Organic Letters,2017,19(10):2666-2669. doi: 10.1021/acs.orglett.7b01005
[36] ZHU J Y, CAO L N, YAN T F, et al. Supramolecular aggregates with macroscopic chirality by self-assembly of helical small molecules [J]. Chemical Physics Letters,2016,662:291-295. doi: 10.1016/j.cplett.2016.09.066
[37] WU C F, LI Z M, XU X N, et al. Folding-induced folding: The assembly of aromatic amide and 1,2,3-triazole hybrid helices [J]. Chemistry: A European Journal,2014,20(5):1418-1426. doi: 10.1002/chem.201304161
[38] ZHAO W, WANG Y, SHANG J, et al. Acid/base-mediated uptake and release of halide anions with a preorganized aryl-triazole foldamer [J]. Chemistry: A European Journal,2015,21(21):7731-7735. doi: 10.1002/chem.201500899
[39] ZHU J, DONG Z, LEI S, et al. Design of aromatic helical polymers for stm visualization: Imaging of single and double helices with a pattern of π–π stacking [J]. Angewandte Chemie International Edition,2015,54(10):3097-3101. doi: 10.1002/anie.201410975
[40] ZHANG D W, ZHAO X, HOU J L, et al. Aromatic amide foldamers: Structures, properties, and functions [J]. Chemical Reviews,2012,112(10):5271-5316. doi: 10.1021/cr300116k
[41] LU Y X, SHI Z M, LI Z T, et al. Helical polymers based on intramolecularly hydrogen-bonded aromatic polyamides [J]. Chemical Communications,2010,46(47):9019-9021. doi: 10.1039/c0cc03689g
[42] ZHANG A, FERGUSON J S, YAMATO K, et al. Improving foldamer synthesis through protecting group induced unfolding of aromatic oligoamides [J]. Organic Letters,2006,8(22):5117-5120. doi: 10.1021/ol062103d
[43] XIN P, ZHU P, SU P, et al. Hydrogen-bonded helical hydrazide oligomers and polymer that mimic the ion transport of gramicidin A [J]. Journal of the American Chemical Society,2014,136(38):13078-13081. doi: 10.1021/ja503376s
[44] GUO R, ZHANG L, WANG H, et al. Hydrophobically driven twist sense bias of hollow helical foldamers of aromatic hydrazide polymers in water [J]. Polymer Chemistry,2015,6(13):2382-2385. doi: 10.1039/C5PY00129C
[45] VAN GORP J J, VEKEMANS J A J M, MEIJER E W. Facile synthesis of a chiral polymeric helix; folding by intramolecular hydrogen bonding [J]. Chemical Communications,2004(1):60-61. doi: 10.1039/b312407j
[46] ZIACH K, CHOLLET C, PARISSI V, et al. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA [J]. Nature Chemistry,2018,10(5):511-518. doi: 10.1038/s41557-018-0018-7
[47] BARBOIU M, LEHN J M. Dynamic chemical devices: Modulation of contraction/extension molecular motion by coupled-ion binding/pH change-induced structural switching [J]. Proceedings of the National Academy of Sciences,2002,99(8):5201-5206. doi: 10.1073/pnas.082099199
[48] YOU L Y, CHEN S G, ZHAO X, et al. C―H…O hydrogen bonding induced triazole foldamers: Efficient halogen bonding receptors for organohalogens [J]. Angewandte Chemie International Edition,2012,51(7):1657-1661. doi: 10.1002/anie.201106996
[49] LANG C, LI W, DONG Z, et al. Biomimetic transmembrane channels with high stability and transporting efficiency from helically folded macromolecules [J]. Angewandte Chemie International Edition,2016,55(33):9723-9727. doi: 10.1002/anie.201604071
[50] LANG C, DENG X, YANG F, et al. Highly selective artificial potassium ion channels constructed from pore-containing helical oligomers [J]. Angewandte Chemie International Edition,2017,56(41):12668-12671. doi: 10.1002/anie.201705048
[51] LI W, DONG Z, ZHU J, et al. Spontaneous formation of organic helical architectures through dynamic covalent chemistry [J]. Chemical Communications,2014,50(94):14744-14747. doi: 10.1039/C4CC07263D
[52] LI W, ZHANG C, QI S, et al. A folding-directed catalytic microenvironment in helical dynamic covalent polymers formed by spontaneous configuration control [J]. Polymer Chemistry,2017,8(8):1294-1297. doi: 10.1039/C6PY02200F
[53] FOLMER-ANDERSEN J F, LEHN J M. Constitutional adaptation of dynamic polymers: Hydrophobically driven sequence selection in dynamic covalent polyacylhydrazones [J]. Angewandte Chemie International Edition,2009,48(41):7664-7667. doi: 10.1002/anie.200902487
[54] DELAURIERE L, DONG Z, LAXMI-REDDY K, et al. Deciphering aromatic oligoamide foldamer–DNA interactions [J]. Angewandte Chemie International Edition,2012,51(2):473-477. doi: 10.1002/anie.201106208
[55] JEWGINSKI M, GRANIER T, D’ESTAINTOT B L, et al. Self-assembled protein–aromatic foldamer complexes with 2∶3 and 2∶2∶1 stoichiometries [J]. Journal of the American Chemical Society,2017,139(8):2928-2931. doi: 10.1021/jacs.7b00184
[56] LI X, MARKANDEYA N, JONUSAUSKAS G, et al. Photoinduced electron transfer and hole migration in nanosized helical aromatic oligoamide foldamers [J]. Journal of the American Chemical Society,2016,138(41):13568-13578. doi: 10.1021/jacs.6b05668
[57] LI W, ZHU J, DONG Z. Synthesis of hollow aromatic helix and their selective recognition for alkali metal ions [J]. Chinese J of Organic Chemistry,2016,36(7):1668-1671. doi: 10.6023/cjoc201601004
[58] CHANDRAMOULI N, FERRAND Y, LAUTRETTE G, et al. Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose [J]. Nature Chemistry,2015,7(4):334-341. doi: 10.1038/nchem.2195
[59] WANG W, ZHANG C, QI S, et al. A switchable helical capsule for encapsulation and release of potassium ion [J]. The Journal of Organic Chemistry,2018,83(4):1898-1902. doi: 10.1021/acs.joc.7b02840
[60] TUNUGUNTLA R H, HENLEY R Y, YAO Y C, et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins [J]. Science,2017,357(6353):792-796. doi: 10.1126/science.aan2438