[1] YADAV K S, RAJPUROHIT R , SHARMA S. Glaucoma: Current treatment and impact of advanced drug delivery systems [J]. Life Sciences,2019,221:362-376. doi: 10.1016/j.lfs.2019.02.029
[2] IBRAHIM M M, ABDELGAWAD A E, SOLIMAN O A, et al. Novel topical ophthalmic formulations for management of glaucoma [J]. Pharmaceutical Research,2013,30(11):2818-2831. doi: 10.1007/s11095-013-1109-1
[3] NAYAK K, MISRA M. A review on recent drug delivery systems for posterior segment of eye [J]. Biomedicine & Pharmacotherapy,2018,107:1564-1582.
[4] JANAGAM D R, WU L F, LOWE T. Nanoparticles for drug delivery to the anterior segment of the eye [J]. Advanced Drug Delivery Reviews,2017,122:31-64. doi: 10.1016/j.addr.2017.04.001
[5] BACHU R, CHOWDHURY P, AL-SAEDI Z, et al. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases [J]. Pharmaceutics,2018,10(1):28. doi: 10.3390/pharmaceutics10010028
[6] MALHOTRA M, MAJUMDAR D K. Permeation through cornea [J]. Indian Journal of Experimental Biology,2001,39(1):11-24.
[7] YUWAIMAN C, TAGALAKIS A, MANUNTA M, et al. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis [J]. Science Reports,2016,6:21881. doi: 10.1038/srep21881
[8] GAUDANA R, ANANTHULA H, PARENKY A, et al. Ocular drug delivery [J]. The AAPS Journal,2010,12(3):348-360. doi: 10.1208/s12248-010-9183-3
[9] CHEN W, LI Z, HU J, et al. Corneal alternations induced by topical application of benzalkonium chloride in rabbit [J]. PLoS One,2011,6(10):e26103. doi: 10.1371/journal.pone.0026103
[10] JOHNSON N F. Pulmonary toxicity of benzalkonium chloride [J]. Journal of Aerosol and Pulmonary Drug Delivery,2018,31(1):1-17. doi: 10.1089/jamp.2017.1390
[11] SAH A K, SURESH P K. Medical management of glaucoma: Focus on ophthalmologic drug delivery systems of timolol maleate [J]. Artificial Cells Nanomedicine and Biotechnology,2017,45(3):448-459. doi: 10.3109/21691401.2016.1160917
[12] HUANG J Y, PENG T T, LI Y R, et al. Ocular cubosome drug delivery system for timolol maleate: Preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation [J]. AAPS PharmSciTech,2017,18(8):2919-2926. doi: 10.1208/s12249-017-0763-8
[13] RETAY M, BELLOTTI E, GOTTARDI R, et al. Modern therapeutic approaches for noninfectious ocular diseases involving inflammation [J]. Advanced Healthcare Materials,2017,6(23):1700733.
[14] ZHAO R, LI J, WANG J, et al. Development of timolol-loaded galactosylated chitosan nanoparticles and evaluation of their potential for ocular drug delivery [J]. AAPS PharmSciTech,2017,18(4):997-1008. doi: 10.1208/s12249-016-0669-x
[15] DUBEY V, MOHAN P, DANGI J S, et al. Brinzolamide loaded chitosan-pectin mucoadhesive nanocapsules for management of glaucoma: Formulation, characterization and pharmacodynamics study [J]. International Journal of Biological Macromolecules,2020,152:1224-1232. doi: 10.1016/j.ijbiomac.2019.10.219
[16] JUCARA R F, GISELLE F, LEONARDO L F, et al. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: In vitro and in vivo evaluation [J]. PLoS One,2014,9(4):e95461. doi: 10.1371/journal.pone.0095461
[17] CHENG Y H, KO Y C, CHANG Y F, et al. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment [J]. Experimental Eye Research,2019,179:179-187. doi: 10.1016/j.exer.2018.11.017
[18] WADAHA S, PALIWAL R, PALIWAO S R, et al. Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: Development, characterization, and evaluation [J]. Journal of Drug Targeting,2010,18(4):292-302. doi: 10.3109/10611860903450023
[19] DEMAILLY P, ALLARIE C, TRINQUAND C, et al. Ocular hypotensive efficacy and safety of once daily carteolol alginate [J]. British Journal of Ophthalmology,2001,85(8):921-924. doi: 10.1136/bjo.85.8.921
[20] ABURAHMA M H, MAHMOUD A A. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: Preparation and in vitro/in vivo evaluation [J]. AAPS PharmSciTech,2011,12(4):1335-1347. doi: 10.1208/s12249-011-9701-3
[21] NAIR R V, SURESH A, NAIR S C, et al. Sustained release timolol maleate loaded ocusert based on biopolymer composite [J]. International Journal of Biological Macromolecules,2018,110:308-317. doi: 10.1016/j.ijbiomac.2018.01.029
[22] TIGHSAZZADEH M, MITCHELL J C, BOATENG J S. Development and evaluation of performance characteristics of timolol-loaded composite ocular films as potential delivery platforms for treatment of glaucoma [J]. International Journal of Pharmaceutics,2019,566:111-125. doi: 10.1016/j.ijpharm.2019.05.059
[23] FRANCA J R, FOUREAUX G, FUSCALDI L L, et al. Chitosan/hydroxyethyl cellulose inserts for sustained-release of dorzolamide for glaucoma treatment: In vitro and in vivo evaluation [J]. International Journal of Pharmaceutics,2019,570:118662. doi: 10.1016/j.ijpharm.2019.118662
[24] MARIA D N, ABD-ELGAWAD A E H, SOLIMAN A E, et al. Nimodipine ophthalmic formulations for management of glaucoma [J]. Pharmaceutical Research,2017,34(4):809-824. doi: 10.1007/s11095-017-2110-x
[25] GUOM E, STEF E, BJAR G, et al. Methazolamide 1% in cyclodextrin solution lowers IOP in human ocular hypertension [J]. Investigative Ophthalmology & Visual Science,2000,41(11):3552-3554.
[26] SHOKRY M, HATHOUT R M, MANSOUR S, et al. Exploring gelatin nanoparticles as novel nanocarriers for timolol maleate: Augmented in-vivo efficacy and safe histological profile [J]. International Journal of Pharmaceutics,2018,545(1-2):229-239. doi: 10.1016/j.ijpharm.2018.04.059
[27] LIAO Y T, LEE C H, CHEN S T. Gelatin-functionalized mesoporous silica nanoparticles with sustained release properties for intracameral pharmacotherapy of glaucoma [J]. Journal of Materials Chemistry B,2017,5(34):7008-7013. doi: 10.1039/C7TB01217A
[28] KHAN N, AMEEDUZZAF A R, KHANNA K, et al. Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin: Statistical design, characterization and in vivo studies [J]. International Journal of Biological Macromolecules,2018,116:648-663. doi: 10.1016/j.ijbiomac.2018.04.122
[29] WARSI M H, ANWAR M, GARG V, et al. Dorzolamide-loaded PLGA/Vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits [J]. Colloids and surfaces B: Biointerfaces,2014,122:423-431. doi: 10.1016/j.colsurfb.2014.07.004
[30] NATU M V, GASPAR M N, FONTES A, et al. In vitro and in vivo evaluation of an intraocular implant for glaucoma treatment [J]. International Journal of Pharmaceutics,2011,415(1-2):73-82. doi: 10.1016/j.ijpharm.2011.05.047
[31] NATU M V, GASPAR M N, RIBEIRO C A, et al. A poly (ε-caprolactone) device for sustained release of an anti-glaucoma drug [J]. Biomedical Materials,2011,6(2):025003. doi: 10.1088/1748-6041/6/2/025003
[32] SALAMA H A, GHORAB M, MAHMOUD A A, et al. PLGA nanoparticles as subconjunctival injection for management of glaucoma [J]. AAPS PharmSciTech,2017,18(7):2517-2528. doi: 10.1208/s12249-017-0710-8
[33] LANCE K D, GOOD S D, MENDES T S, et al. In vitro and in vivo sustained zero-order delivery of rapamycin (sirolimus) from a biodegradable intraocular device [J]. Investigative Ophthalmology & Visual Science,2015,56(12):7331-7337.
[34] LEE C H, LI Y J, HUANG C C, et al. Poly (ε-caprolactone) nanocapsule carriers with sustained drug release: Single dose for long-term glaucoma treatment [J]. Nanoscale,2017,9(32):11754-11764. doi: 10.1039/C7NR03221H
[35] WANG Y, CHALLAH P, EPSTEIM D L, et al. Controlled release of ethacrynic acid from poly (lactide-co-glycolide) films for glaucoma treatment [J]. Biomaterials,2004,25(18):4279-4285. doi: 10.1016/j.biomaterials.2003.10.075
[36] HUANG S F, CHEN J L, YEH M K, et al. Physicochemical properties and in vivo assessment of timolol-loaded poly (D, L-lactide-co-glycolide) films for long-term intraocular pressure lowering effects [J]. Journal of Ocular Pharmacology and Therapeutics,2005,21(6):445-453. doi: 10.1089/jop.2005.21.445
[37] SUN J G, LEI Y, DAI Z X, et al. Sustained release of brimonidine from a new composite drug delivery system for treatment of glaucoma [J]. ACS Applied Materials & Interfaces,2017,9(9):7990-7999.
[38] ANIRUDHAN T S, NAIR A S, PARVATHY J. Extended wear therapeutic contact lens fabricated from timolol imprinted carboxymethyl chitosan-g-hydroxyethyl methacrylate-g-polyacrylamide as a onetime medication for glaucoma [J]. European Journal of Pharmaceutics and Biopharmaceutics,2010,109:67-71.
[39] VANDAMME T F, BROBECK L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide [J]. Journal of Control Release,2005,102(1):23-38. doi: 10.1016/j.jconrel.2004.09.015
[40] SPATARO G, MALECAZE F, TURRIN C O, et al. Designing dendrimers for ocular drug delivery [J]. European Journal of Medical Chemistry,2010,45(1):326-334. doi: 10.1016/j.ejmech.2009.10.017
[41] DIPRIMA G, LICCIARDI M, PAVIA F C, et al. Microfibrillar polymeric ocular inserts for triamcinolone acetonide delivery [J]. International Journal of Pharmaceutics,2019,15(567):118459.
[42] LEWIS R A, CHRISTIE W C, DAY D G, et al. Bimatoprost sustained-release implants for glaucoma therapy: 6-Month results from a phase I/II clinical trial [J]. American Journal of Ophthalmology,2017,175:137-147. doi: 10.1016/j.ajo.2016.11.020
[43] BRANDT J D, SALL K, DUBINER H, et al. Six-month intraocular pressure reduction with a topical bimatoprost ocular insert [J]. Ophthalmology,2016,123(8):1685-1694. doi: 10.1016/j.ophtha.2016.04.026
[44] GUPTA P, YADAV K S. Application of microneedles in delivering drugs for various ocular diseases [J]. Life Sciences,2019,237:116907. doi: 10.1016/j.lfs.2019.116907
[45] DIXON P, SHAFOR C, GAUSE S, et al. Therapeutic contact lenses: A patent review [J]. Expert Opinion on Therapeutic Patents,2015,25(10):1117-1129. doi: 10.1517/13543776.2015.1057501
[46] CARVALHO I M, MARQUES C S, OLIVEIRA R S, et al. Sustained drug release by contact lenses for glaucoma treatment: A review [J]. Journal of Control Release,2015,202:76-82. doi: 10.1016/j.jconrel.2015.01.023
[47] LI C, CHAUHAN A. Ocular transport model for ophthalmic delivery of timolol through p-HEMA contact lenses [J]. Journal of Drug Delivery Science and Technology,2007,17:69-79. doi: 10.1016/S1773-2247(07)50010-9
[48] RUBEN M, WATKINS R. Pilocarpine dispensation for the soft hydrophilic contact lens [J]. British Journal of Ophthalmology,1975,59:455-458. doi: 10.1136/bjo.59.8.455
[49] SCHULTZ C L, POLING T R, MINT J O. A medical device/drug delivery system for treatment of glaucoma [J]. Clinical and Experimental Optometry,2009,92:342-348.
[50] KIM H J, ZHANG K Y, MOORE L, et al. Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release [J]. ACS Nano,2014,8(3):2998-3005. doi: 10.1021/nn5002968
[51] MAULVI F A, LAKDAWALA D H, SHAIKH A A, et al. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery [J]. Journal of Controlled Release,2016,226:47-56. doi: 10.1016/j.jconrel.2016.02.012
[52] PENG C C, BEN A, MACAKAY E O, et al. Drug delivery by contact lens in spontaneously glaucomatous dogs [J]. Current Eye Research,2012,37(3):204-211. doi: 10.3109/02713683.2011.630154
[53] LIM L, LOUGHNAN M S, SULLIVAN L J. Microbial keratitis associated with extended wear of silicone hydrogel contact lenses [J]. British Journal of Ophthalmology,2002,86(3):355-357. doi: 10.1136/bjo.86.3.355
[54] KOMEPELLA U B, HARTMAN R R, PATIL M A. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma [J]. Progress in Retinal and Eye Research,2020,4:100901.
[55] PERARA S A, TING D S, NONGPIUR M E, et al. Feasibility study of sustained-release travoprost punctum plug for intraocular pressure reduction in an Asian population [J]. Clinical Ophthalmology,2016,26(10):757-764.
[56] KIM J, KUDISCH M, MUDUMBA S, et al. Biocompatibility and pharmacokinetic analysis of an intracameral polycaprolactone drug delivery implant for glaucoma [J]. Investigative Ophthalmology & Visual Science,2016,57(10):4341-4346.
[57] KIM J, KUDISCH M, DASILVA N R K, et al. Long-term intraocular pressure reduction with intracameral polycaprolactone glaucoma devices that deliver a novel anti-glaucoma agent [J]. Journal of Control Release,2018,269:45-51. doi: 10.1016/j.jconrel.2017.11.008
[58] MACOUL K L, PAVAN-LANGSTON D. Pilocarpine ocusert system for sustained control of ocular hypertension [J]. Archives of Ophthalmology,1975,93(8):587-590. doi: 10.1001/archopht.1975.01010020571003
[59] KIM  Y  C,  EDELHASER  H  F,  PRAUSNITZ  M  R.  Targeted  delivery  of  antiglaucoma  drugs  to  the  supraciliary  space  usingmicroneedles [J]. Investigative Ophthalmology & Visual Science, 2014, 55(11): 7387-7397.
[60] GARG P, VENUGANTI V A, ROY A, et al. Novel drug delivery methods for the treatment of keratitis: Moving away from surgical intervention [J]. Expert Opinion on Drug Delivery,2019,16(12):1381-1391. doi: 10.1080/17425247.2019.1690451
[61] JIANG J, GILL H S, GHATE D, et al. Coated microneedles for drug delivery to the eye [J]. Investigative Ophthalmology & Visual Science,2007,48(9):4038-4043.
[62] JIANG J, MOORE J S, JAISER H F, et al. Intrascleral drug delivery to the eye using hollow microneedles [J]. PharmaceuticalResearch, 2009, 26(2): 395-403.
[63] ALMEIDA H, AMARAL M, LOBAOI P, et al. In situ gelling systems: A strategy to improve the bioavailability of ophthalmic pharmaceutical formulations [J]. Drug Discovery Today,2014,19:400-412. doi: 10.1016/j.drudis.2013.10.001
[64] VIGANI B, ROSSI S, SANDRI G, et al. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes [J]. Pharmaceutics,2020,12(9):859. doi: 10.3390/pharmaceutics12090859
[65] WANG J, WILL G S, YAN H. Branched polyrotaxane hydrogels consisting of alpha-cyclodextrin and low-molecular-weight four-arm polyethylene glycol and the utility of their thixotropic property for controlled drug release [J]. Biointerfaces,2018,165:144-149. doi: 10.1016/j.colsurfb.2018.02.032
[66] BARSE R K, TAGALPALLEWAR A A, KOKARE C R, et al. Formulation and ex vivo-in vivo evaluation of pH-triggered brimonidine tartrate in situ gel for the glaucoma treatment using application of 32 factorial design [J]. Drug Development and Industrial Pharmacy,2018,44(5):800-807. doi: 10.1080/03639045.2017.1414229
[67] KOUCHAK M A, MAHMOODZADEH M, FARRAHI F. Designing of a pH-Triggered Carbopol®/HPMC in situ gel for ocular delivery of dorzolamide HCl: In vitro, in vivo, and ex vivo evaluation [J]. AAPS PharmSciTech,2019,20(5):210. doi: 10.1208/s12249-019-1431-y
[68] GUPTA S, VYAS S P. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate [J]. Scientific Pharmacy,2010,78(4):959-976.
[69] LI J, LIU H, LIU L L, et al. Design and evaluation of a brinzolamide drug-resin in situ thermosensitive gelling system for sustained ophthalmic drug delivery [J]. Chemical & Pharmaceutical Bulletin,2014,62(10):1000-1008.
[70] CAO Y X, ZHANG C, SHEN W B, et al. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery [J]. Journal of Controlled Release,2007,120(3):186-194. doi: 10.1016/j.jconrel.2007.05.009
[71] SONG Y H, NAGAI N, SAIJO S, et al. In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery [J]. Materials Science & Engineering C: Materials for Biological Applications,2018,1(88):1-12.
[72] GUPTA H, JAIN S, MATHUR R, et al. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system [J]. Drug Delivery,2007,14(8):507-515. doi: 10.1080/10717540701606426
[73] EL-FEKY G S, ZAYED G M, ELSHAIR Y, et al. Chitosan-gelatin hydrogel crosslinked with oxidized sucrose for the ocular delivery of timolol maleate [J]. Journal of Pharmaceutical Sciences,2018,107(12):3098-3104. doi: 10.1016/j.xphs.2018.08.015
[74] WANG J, GEOFFREY S, WILLIAMSON G S, et al. Mildly cross-linked dendrimer hydrogel prepared via Aza-Michael addition reaction for topical brimonidine delivery [J]. Journal of Biomedical Nanotechnology,2017,13(9):1089-1096. doi: 10.1166/jbn.2017.2436
[75] NISHIMURA T A, AKIYOSHI K. Biotransporting biocatalytic reactors toward therapeutic nanofactories [J]. Advanced Science,2018,5(11):1800801. doi: 10.1002/advs.201800801
[76] BOZZUTO G, MOLINARI A. Liposomes as nanomedical devices [J]. International Journal of Nanomedicine,2015,10:975-999.
[77] YAVUZ B, PEHLIVAN S B, UNLU N, et al. Dendrimeric systems and their applications in ocular drug delivery [J]. Scientific World Journal,2013,2013:732340.
[78] LALU L, TAMBE V, PRADHAN D, et al. Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions [J]. Journal of Control Release,2017,268:19-39. doi: 10.1016/j.jconrel.2017.07.035
[79] DELA M, RAVINA M, PAOLICELLI P, et al. Chitosan-based nanostructures: A delivery platform for ocular therapeutics [J]. Advanced Drug Delivery Reviews,2010,62(1):100-117. doi: 10.1016/j.addr.2009.11.026
[80] ZHU X, SU M, TANG S, et al. Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery [J]. Molecular Vision,2012,18:1973-1982.
[81] KASHIWAGI K, ITO K, HANIUDA H, et al. Development of latanoprost-loaded biodegradable nanosheet as a new drug delivery system for glaucoma [J]. Investigative Ophthalmology & Visual Science,2013,54(8):5629-5637.
[82] PANDIAN S, JEEVANESAN V, PONNUSAMY C, et al. RES-loaded PEGylated CS NPs: For efficient ocular delivery [J]. IET Nanobiotechnology,2017,11(1):32-39. doi: 10.1049/iet-nbt.2016.0069
[83] BHALERAO H, KOTESCHWARA K B, CHANDRAN S, et al. Design, optimization and evaluation of in situ gelling nanoemulsion formulations of brinzolamide [J]. Drug Delivery and Translational Research,2020,10(2):529-547. doi: 10.1007/s13346-019-00697-0
[84] MEZA-RIOS A, NAVARRO-PARTIDA J, ARMENDARIZ-BORUNDA J. Therapies based on nanoparticles for eye drug delivery [J]. Ophthalmology and Therapy,2020,9(3):1-14.
[85] SOUTO E B, DIAS J O, LOPEZ A, et al. Advanced formulation approaches for ocular drug delivery: State-of-the-art and recent patents [J]. Pharmaceutics,2019,11(9):460. doi: 10.3390/pharmaceutics11090460
[86] FAHMY H M, SAAD E, SABRA N M, et al. Treatment merits of latanoprost/thymoquinone-encapsulated liposome for glaucomatous rabbits [J]. International Journal of Pharmaceutics,2018,548(1):597-608. doi: 10.1016/j.ijpharm.2018.07.012
[87] NATARAJAN J V, ANG M A, DARWITAN A S, et al. Nanomedicine for glaucoma: Liposomes provide sustained release of latanoprost in the eye [J]. International Journal of Nanomedicine,2012,7:123-131.
[88] HUANG Y, TAO Q, HOU D Z, et al. A novel ion-exchange carrier based upon liposome-encapsulated montmorillonite for ophthalmic delivery of betaxolol hydrochloride [J]. International Journal of Nanomedicine,2017,12:1731-1745. doi: 10.2147/IJN.S122747
[89] LI R, JIANG S, LIU D, et al. A potential new therapeutic system for glaucoma: Solid lipid nanoparticles containing methazolamide [J]. Journal of Microencapsulation,2011,28(2):134-141. doi: 10.3109/02652048.2010.539304
[90] CHAUHAN A S. Dendrimers for drug delivery [J]. Molecules,2018,23(4):938. doi: 10.3390/molecules23040938
[91] KALAMIRAKI M, THERMOSK K, CHANIOTAKIS N A. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications [J]. International Journal of Nanomedicine,2016,11:1-2. doi: 10.2217/nnm.15.152