[1] ZHAO C S, XUE J M, RAN F, et al. Modification of polyethersulfone membranes: A review of methods [J]. Progress in Materials Science,2013,58(1):76-150. doi: 10.1016/j.pmatsci.2012.07.002
[2] LIAO Y, LOH C H, TIAN M, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications [J]. Progress in Polymer Science,2018,77:69-94. doi: 10.1016/j.progpolymsci.2017.10.003
[3] SARKAR S, CHAKRABORTY S. Nanocomposite polymeric membrane a new trend of water and wastewater treatment: A short review [J]. Groundwater for Sustainable Development,2021,12:100533. doi: 10.1016/j.gsd.2020.100533
[4] IRFAN M, IDRIS A. Overview of PES biocompatible/hemodialysis membranes: PES-blood interactions and modification techniques [J]. Materials Science and Engineering C,2015,56:574-592. doi: 10.1016/j.msec.2015.06.035
[5] TANG M, XUE J M, YAN K, et al. Heparin-like surface modification of polyethersulfone membrane and its biocompatibility [J]. Journal of Colloid and Interface Science,2012,386(1):428-440. doi: 10.1016/j.jcis.2012.07.076
[6] MA L, SU B H, CHENG C, et al. Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo [J]. Journal of Membrane Science,2014,470:90-101. doi: 10.1016/j.memsci.2014.07.030
[7] XIE J H, ZHANG W G. Research and development of smart material and structure [J]. Chinese Journal of Sensors and Actuators,2004,17(4):164-167.
[8] LOGAN B E, ELIMELECH M. Membrane-based processes for sustainable power generation using water [J]. Nature,2012,488(7411):313-319. doi: 10.1038/nature11477
[9] ULBRICHT M. Advanced functional polymer membranes [J]. Polymer,2006,47(7):2217-2262. doi: 10.1016/j.polymer.2006.01.084
[10] KHAYET M, GARCIA-PAYO M C. X-ray diffraction study of polyethersulfone polymer, flat-sheet and hollow fibers prepared from the same under different gas-gaps [J]. Desalination,2009,245(1-3):494-500. doi: 10.1016/j.desal.2009.02.013
[11] BARTH C, GONÇALVES M C, PIRES A T N, et al. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance [J]. Journal of Membrane Science,2000,169(2):287-299. doi: 10.1016/S0376-7388(99)00344-0
[12] van der BRUGGEN B. Chemical modification of polyethersulfone nanofiltration membranes: A review [J]. Journal of Applied Polymer Science,2009,114(1):630-642. doi: 10.1002/app.30578
[13] KOH M, CLARK M A, HOWE K J. Filtration of lake natural organic matter: Adsorption capacity of a polypropylene microfilter [J]. Journal of Membrane Science,2005,256(1-2):169-175.
[14] WERNER C, JACOBASCH H J, REICHELT G. Surface characterization of hemodialysis membranes based on streaming potential measurements [J]. Journal of Biomaterials Science: Polymer Edition,1995,7(1):61-76.
[15] SAMTLEBEN W, DENGLER C, REINHARDT B, et al. Comparison of the new polyethersulfone high-flux membrane DIAPES (R) HF800 with conventional high-flux membranes during on-line haemodiafiltration [J]. Nephrology Dialysis Transplantation,2003,18(11):2382-2386. doi: 10.1093/ndt/gfg410
[16] LIU Z B, DENG X P, WANG M, et al. BSA-modified polyethersulfone membrane: Preparation, characterization and biocompatibility [J]. Journal of Biomaterials Science: Polymer Edition,2009,20(3):377-397. doi: 10.1163/156856209X412227
[17] WANG Z, WANG Y. Highly permeable and robust responsive nanoporous membranes by selective swelling of triblock terpolymers with a rubbery block [J]. Macromolecules,2016,49(1):182-191. doi: 10.1021/acs.macromol.5b02275
[18] LIU Z, WANG W, XIE R, et al. Stimuli-responsive smart gating membranes [J]. Chemical Society Reviews,2016,45(3):460-474. doi: 10.1039/C5CS00692A
[19] LU D, ZOU H, GUAN R, et al. Sulfonation of polyethersulfone by chlorosulfonic acid [J]. Polymer Bulletin,2005,54(1):21-28.
[20] GUIVER M D, CROTEAU S, HAZLETT J D, et al. Synthesis and characterization of carboxylated polysulfones [J]. British Polymer Journal,1990,23(1-2):29-39. doi: 10.1002/pi.4980230107
[21] WANG Y Q, WANG T, SU Y L, et al. Protein-adsorption-resistance and permeation property of polyethersulfone and soybean phosphatidylcholine blend ultrafiltration membranes [J]. Journal of Membrane Science,2006,270(1):108-114.
[22] BARZIN J, FENG C, KHULBE K C, et al. Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy [J]. Journal of Membrane Science,2004,237(1):77-85.
[23] MURALI R S, SRIDHAR S, SANKARSHANA T, et al. Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes [J]. Industrial & Engineering Chemistry Research,2010,49(14):6530-6538.
[24] MA X, SU Y, SUN Q, et al. Enhancing the antifouling property of polyethersulfone ultrafiltration membranes through surface adsorption-crosslinking of poly(vinyl alcohol) [J]. Journal of Membrane Science,2007,300(1):71-78.
[25] WANG D, ZOU W, LI L, et al. Preparation and characterization of functional carboxylic polyethersulfone membrane [J]. Journal of Membrane Science,2011,374(1):93-101.
[26] KANG M S, CHOI Y J, CHOI I J, et al. Electrochemical characterization of sulfonated poly(arylene ether sulfone) (S-PES) cation-exchange membranes [J]. Journal of Membrane Science,2003,216(1):39-53.
[27] DENG B, LI J, HOU Z, et al. Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence [J]. Radiation Physics and Chemistry,2008,77(7):898-906. doi: 10.1016/j.radphyschem.2008.02.008
[28] XIANG T, WANG L R, MA L, et al. From commodity polymers to functional polymers [J]. Scientific Reports,2014,4(1):4604.
[29] QIN H, SUN C C, HE C, et al. High efficient protocol for the modification of polyethersulfone membranes with anticoagulant and antifouling properties via in situ cross-linked copolymerization [J]. Journal of Membrane Science,2014,468:172-183. doi: 10.1016/j.memsci.2014.06.006
[30] LI S S, XIE Y, XIANG T, et al. Heparin-mimicking polyethersulfone membranes-hemocompatibility, cytocompatibility, antifouling and antibacterial properties [J]. Journal of Membrane Science,2016,498:135-146. doi: 10.1016/j.memsci.2015.09.054
[31] WANG C, XU Y, SUN S D, et al. Post-functionalization of carboxylic polyethersulfone composite membranes [J]. Composites Science and Technology,2017,156:48-60.
[32] JI H F, JIN L Q, SONG X, et al. Surface engineering of low-fouling and hemocompatible polyethersulfone membranes via in-situ ring-opening reaction [J]. Journal of Membrane Science,2019,581:373-382. doi: 10.1016/j.memsci.2019.03.082
[33] ZHOU H, CHENG C, QIN H, et al. Self-assembled 3D biocompatible and bioactive layer at the macro-interface via graphene-based supermolecules [J]. Polymer Chemistry,2014,5(11):3563-3575. doi: 10.1039/c4py00136b
[34] HAN Z Y, CHENG C, ZHANG L, et al. Toward robust pH-responsive and anti-fouling composite membranes via one-pot in-situ cross-linked copolymerization [J]. Desalination,2014,349:80-93. doi: 10.1016/j.desal.2014.06.025
[35] XIANG T, YUE W W, WANG R, et al. Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility [J]. Colloids and Surfaces B: Biointerfaces,2013,110:15-21. doi: 10.1016/j.colsurfb.2013.04.034
[36] XIANG T, YUE W W, WANG R, et al. Ionic-strength-sensitive polyethersulfone membrane with improved anti-fouling property modified by zwitterionic polymer via in situ cross-linked polymerization [J]. Journal of Membrane Science,2015,476:234-242. doi: 10.1016/j.memsci.2014.11.045
[37] CHEN S Q, XIE Y, XIAO T, et al. Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface [J]. Chemical Engineering Journal,2018,337:122-132. doi: 10.1016/j.cej.2017.12.057
[38] SALIMI E, GHAEE A, ISMAIL A F. Performance and antifouling enhancement of polyethersulfone hollow fiber membranes incorporated with highly hydrophilic hydroxyapatite nanoparticles [J]. Rsc Advances,2016,6(50):44480-44488. doi: 10.1039/C6RA05451J
[39] ZHU L J, ZHU L P, ZHAO Y F, et al. Anti-fouling and anti-bacterial polyethersulfone membranes quaternized from the additive of poly(2-dimethylamino ethyl methacrylate) grafted SiO2 nanoparticles [J]. Journal of Materials Chemistry A,2014,2(37):15566-15574. doi: 10.1039/C4TA03199G
[40] WU P, TANG X, LIU Y S, et al. An alginate active layer of polyether sulfone membrane suppresses algae-fouling in repeated filtration of Chlorella vulgaris for a higher recovery of water permeation flux [J]. Environmental Science: Water Research & Technology,2019,5(12):2162-2171.
[41] ZHANG G F, GAO F, ZHANG Q H, et al. Enhanced oil-fouling resistance of poly(ether sulfone) membranes by incorporation of novel amphiphilic zwitterionic copolymers [J]. Rsc Advances,2016,6(9):7532-7543. doi: 10.1039/C5RA23544H
[42] SUSANTO H, BALAKRISHNAN M, ULBRICHT M. Via surface functionalization by photograft copolymerization to low-fouling polyethersulfone-based ultrafiltration membranes [J]. Journal of Membrane Science,2007,288(1-2):157-167. doi: 10.1016/j.memsci.2006.11.013
[43] WANG J X, PENG C R, CHEN H, et al. Fabrication of hemocompatible polyethersulfone derivatives by one-step radiation-induced homogeneous polymerization [J]. Materials Today Communications,2020,25:101548. doi: 10.1016/j.mtcomm.2020.101548
[44] WANG R, XIANG T, ZHAO W F, et al. A facile approach toward multi-functional polyurethane/polyethersulfone composite membranes for versatile applications [J]. Materials Science and Engineering C,2016,59:556-564. doi: 10.1016/j.msec.2015.10.058
[45] ZHAO S, HUANG L C, TONG T Z, et al. Antifouling and antibacterial behavior of polyethersulfone membrane incorporating polyaniline@ silver nanocomposites [J]. Environmental Science: Water Research & Technology,2017,3(4):710-719.
[46] HE M, WANG Q, ZHAO W F, et al. A substrate-independent ultrathin hydrogel film as an antifouling and antibacterial layer for a microfiltration membrane anchored via a layer-by-layer thiol-ene click reaction [J]. Journal of Materials Chemistry B,2018,6(23):3904-3913. doi: 10.1039/C8TB00937F
[47] XING J, WANG Q, HE T, et al. Polydopamine-assisted immobilization of copper ions onto hemodialysis membranes for antimicrobial [J]. ACS Applied Bio Materials,2018,1(5):1236-1243. doi: 10.1021/acsabm.8b00106
[48] XIE Y, CHEN S Q, QIAN Y H, et al. Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property [J]. Materials Science and Engineering C,2018,84:52-59. doi: 10.1016/j.msec.2017.11.036
[49] JIN L Q, SHI Z Q, ZHANG X, et al. Intelligent antibacterial surface based on ionic liquid molecular brushes for bacterial killing and release [J]. Journal of Materials Chemistry B,2019,7(36):5520-5527. doi: 10.1039/C9TB01199D
[50] ZHAO C S, NIE S Q, TANG M, et al. Polymeric pH-sensitive membranes: A review [J]. Progress in Polymer Science,2011,36(11):1499-1520. doi: 10.1016/j.progpolymsci.2011.05.004
[51] ZOU W, HUANG Y, LUO J, et al. Poly (methyl methacrylate-acrylic acid-vinyl pyrrolidone) terpolymer modified polyethersulfone hollow fiber membrane with pH sensitivity and protein antifouling property [J]. Journal of Membrane Science,2010,358(1-2):76-84. doi: 10.1016/j.memsci.2010.04.028
[52] LI H J, LIAO J Y, XIANG T, et al. Preparation and characterization of pH- and thermo-sensitive polyethersulfone hollow fiber membranes modified with P(NIPAAm-MAA-MMA) terpolymer [J]. Desalination,2013,309:1-10. doi: 10.1016/j.desal.2012.09.008
[53] ZHANG X, ZHOU J K, WEI R, et al. Design of anion species/strength responsive membranes via in-situ cross-linked copolymerization of ionic liquids [J]. Journal of Membrane Science,2017,535:158-167. doi: 10.1016/j.memsci.2017.04.044
[54] SHI W B, DENG J, QIN H, et al. Poly(ether sulfone) membranes with photo-responsive permeability [J]. Journal of Membrane Science,2014,455:357-367. doi: 10.1016/j.memsci.2014.01.005
[55] SHI W B, ZHANG L J, DENG J, et al. Redox-responsive polymeric membranes via supermolecular host-guest interactions [J]. Journal of Membrane Science,2015,480:139-152. doi: 10.1016/j.memsci.2015.01.050
[56] WEI R, GUO J B, JIN L Q, et al. Vapor induced phase separation towards anion-/near-infrared-responsive pore channels for switchable anti-fouling membranes [J]. Journal of Materials Chemistry A,2020,8(18):8934-8948. doi: 10.1039/D0TA02154G
[57] YUE W W, XIANG T, ZHAO W F, et al. Preparation and characterization of pH-sensitive polyethersulfone membranes blended with poly(methyl methacrylate-co-maleic anhydride) copolymer [J]. Separation Science and Technology,2013,48(13):1941-1953. doi: 10.1080/01496395.2013.793200
[58] ZHANG X, LIU Y, SUN C C, et al. Graphene oxide-based polymeric membranes for broad water pollutant removal [J]. RSC Advances,2015,5(122):100651-100662. doi: 10.1039/C5RA20243D
[59] CHEN S Q, LV C Y, HAO K, et al. Multifunctional negatively-charged poly (ether sulfone) nanofibrous membrane for water remediation [J]. Journal of Colloid and Interface Science,2019,538:648-659. doi: 10.1016/j.jcis.2018.12.038
[60] LV C Y, CHEN S Q, XIE Y, et al. Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal [J]. Journal of Colloid and Interface Science,2019,556:492-502. doi: 10.1016/j.jcis.2019.08.062
[61] XU Y T, YUAN D D, BAO J X, et al. Nanofibrous membranes with surface migration of functional groups for ultrafast wastewater remediation [J]. Journal of Materials Chemistry A,2018,6(27):13359-13372. doi: 10.1039/C8TA04005B
[62] WU K K, YANG W F, JIAO Y P, et al. A surface molecularly imprinted electrospun polyethersulfone (PES) fiber mat for selective removal of bilirubin [J]. Journal of Materials Chemistry B,2017,5(29):5763-5773. doi: 10.1039/C7TB00643H
[63] ZHAO C S, WEI Q R, YANG K G, et al. Preparation of porous polysulfone beads for selective removal of endocrine disruptors [J]. Separation and Purification Technology,2004,40(3):297-302. doi: 10.1016/j.seppur.2004.03.007
[64] ZHANG X, CHENG C, ZHAO J, et al. Polyethersulfone enwrapped graphene oxide porous particles for water treatment [J]. Chemical Engineering Journal,2013,215:72-81.
[65] JIANG X, XIANG T, XIE Y, et al. Functional polyethersulfone particles for the removal of bilirubin [J]. Journal of Materials Science-Materials in Medicine,2016,27(2):28.
[66] WANG Z J, SUN W, WEI Z W, et al. Selective potassium uptake via biocompatible zeolite-polymer hybrid microbeads as promising binders for hyperkalemia [J]. Bioactive Materials,2021,6(2):543-558. doi: 10.1016/j.bioactmat.2020.08.032
[67] CHEN S Q, ZHANG X, HUANG H, et al. Core@ shell poly (acrylic acid) microgels/polyethersulfone beads for dye uptake from wastewater [J]. Journal of Environmental Chemical Engineering,2017,5(2):1732-1743. doi: 10.1016/j.jece.2017.03.013
[68] ZHOU J K, CHEN S Q, XU S, et al. Graphene oxide-based polyethersulfone core-shell particles for dye uptake [J]. RSC Advances,2016,6(104):102389-102397. doi: 10.1039/C6RA18950D
[69] ZHANG J, SHI Z, HE C, et al. Urease immobilized GO core@shell heparin-mimicking polymer beads with safe and effective urea removal for blood purification [J]. International Journal of Biological Macromolecules,2020,156:1503-1511. doi: 10.1016/j.ijbiomac.2019.11.197