[1] XU X, HE L, ZHU B, et al. Advances in polymeric materials for dental applications [J]. Polymer Chemistry,2017,8(5):807-823. doi: 10.1039/C6PY01957A
[2] 龚云, 傅相锴, 谢兵. 不同剂型的菌斑显示剂的研制 [J]. 西南师范大学学报: 自然科学版,2002,27(6):918-921.GONG Y, FU X K, XIE B. Preparation of several forms of plaque indicators [J]. Journal of Southwest China Normal University: Natural Science,2002,27(6):918-921.
[3] 徐春生, 陈丽娜. 牙菌斑染色剂的研制 [J]. 口腔护理用品工业,2017(6):20-22.XU C S, CHEN L N. Preparation of plaque indicators [J]. Oral Care Industry,2017(6):20-22.
[4] 王宁, 李玉晶, 邓惠, 等. 二层龋坏牙本质胶原蛋白中氨基酸含量测定及其临床意义 [J]. 解放军药学学报,2004,20(2):1889-1890.WANG N, LI Y J, DENG H, et al. The determination of the amino acids in the collagenous proteins of two-layer carious dentin and its clinical values [J]. Pharm J Chin PLA,2004,20(2):1889-1890.
[5] SCHWENDICKE F, FRENCKEN J E, BJORNDAL L, et al. Managing carious lesions: Consensus recommendations on carious tissue removal [J]. Advances in Dental Research,2016,28(2):58-67. doi: 10.1177/0022034516639271
[6] YIP H K, STEVENSON A G, BEELEY J A. The specificity of caries detector dyes in cavity preparation [J]. British Dental Journal,1994,176(11):417. doi: 10.1038/sj.bdj.4808470
[7] BANERJEE A. Minimal intervention dentistry: Part 7. Minimally invasive operative caries management: Rationale and techniques [J]. Br Dent J,2013,214(3):107-111. doi: 10.1038/sj.bdj.2013.106
[8] JAVAHERI M, MALEKI-KAMBAKHSH S, ETEMAD-MOGHADAM S. Efficacy of two caries detector dyes in the diagnosis of dental caries [J]. Frontiers in Dentistry,2010,7(2):71.
[9] ORHAN A I, OZ F T, OZCELIK B, et al. A clinical and microbiological comparative study of deep carious lesion treatment in deciduous and young permanent molars [J]. Clinical Oral Investigations,2008,12(4):369-378. doi: 10.1007/s00784-008-0208-6
[10] 赵洋, 毕良佳. 龋齿指示剂的研究 [J]. 中华老年口腔医学杂志,2018,16(1):61-64. doi: 10.3969/j.issn.1672-2973.2018.01.014ZHAO Y, BI L J. The research of caries detector dyes [J]. Chinese Journal of Geriatric Dentistry,2018,16(1):61-64. doi: 10.3969/j.issn.1672-2973.2018.01.014
[11] FERRANDO-MAGRANER E, BELLOT-ARCIS C, PAREDES-GALLARDO V, et al. Antibacterial properties of nanoparticles in dental restorative materials: A systematic review and meta-analysis [J]. Medicina,2020,56(2):55.
[12] QI M, CHI M, SUN X, et al. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases [J]. International Journal of Nanomedicine,2019,14:6937-6956. doi: 10.2147/IJN.S212807
[13] MAKVANDI P, JAMALEDIN R, JABBARI M, et al. Antibacterial quaternary ammonium compounds in dental materials: A systematic review [J]. Dental Materials,2018,34(6):851-867. doi: 10.1016/j.dental.2018.03.014
[14] TAHMASSEBI J F, DROGKARI E, WOOD S R. A study of the control of oral plaque biofilms via antibacterial photodynamic therapy [J]. Europe Archives of Paediatric Dentistry,2015,16(6):433-440. doi: 10.1007/s40368-014-0165-5
[15] WOOD S, METCALF D, DEVINE D, et al. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms [J]. J Antimicrob Chemother,2006,57(4):680-684. doi: 10.1093/jac/dkl021
[16] BALHADDAD A A, KANSARA A A, HIDAN D, et al. Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials [J]. Bioactive Materials,2019,4(1):43-55.
[17] SIMMER J P, HARDY N, CHINOY A, et al. How fluoride protects dental enamel from demineralization[J]. Journal of International Society of Preventive and Community Dentistry, 2020. DOI:10.4103/jispcd.JISPCD_406_19.
[18] van LOVEREN C. Antimicrobial activity of fluoride and its in vivo importance: Identification of research questions [J]. Caries Research,2001,35(S1):65-70.
[19] NOBLE W H, FALLER R V. Protection from dental erosion: All fluorides are not equal [J]. Compend Contin Educ Dent,2018,39(3):e13-e17.
[20] HODISAN I, PREJMEREAN C, PETEAN I, et al. Synthesis and characterization of novel giomers for dental applications [J]. Studia Universitatis Babeș-Bolyai Chemia,2017,62(4):143-154. doi: 10.24193/subbchem.2017.4.12
[21] IKEMURA K, TAY F R, ENDO T, et al. A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers [J]. Dental Materials Journal,2008,27(3):315-339. doi: 10.4012/dmj.27.315
[22] REYNOLDS E C, BLACK C L, CAI F, et al. Advances in enamel remineralization: Casein phosphopeptide-amorphous calcium phosphate [J]. The Journal of Clinical Dentistry,1999,10(2):86-88.
[23] PHILIP N, LEISHMAN S J, BANDARA H, et al. Casein phosphopeptide-amorphous calcium phosphate attenuates virulence and modulates microbial ecology of saliva-derived polymicrobial biofilms [J]. Caries Research Journal,2019,53(6):643-649. doi: 10.1159/000499869
[24] SHIIYA T, KATAOKA A, TOMIYAMA K, et al. Anti-demineralization characteristics of surface pre-reacted glass-ionomer (S-PRG) filler-containing varnishes[J]. Dental Materials Journal, 2020. DOI:10.4012/dmj.2019-396.
[25] WEI Y, LIU S, XIAO Z, et al. Enamel repair with amorphous ceramics [J]. Advanced Materials,2020,32(7):e1907067. doi: 10.1002/adma.201907067
[26] GAD M M, FOUDA S M, AL-HARBI F A, et al. PMMA denture base material enhancement: A review of fiber, filler, and nanofiller addition [J]. International Journal of Nanomedicine,2017,12:3801-3812. doi: 10.2147/IJN.S130722
[27] UYAR T, COKELILER D, DOGAN M, et al. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach [J]. Mater Sci Eng C Mater Biol Appl,2016,62:762-770. doi: 10.1016/j.msec.2016.02.001
[28] HE X, QU Y, PENG J, et al. A novel botryoidal aramid fiber reinforcement of a PMMA resin for a restorative biomaterial [J]. Biomaterials Science,2017,5(4):808-816. doi: 10.1039/C6BM00939E
[29] CIERECH M, OSICA I, KOLENDA A, et al. Mechanical and physicochemical properties of newly formed ZnO-PMMA nanocomposites for denture bases [J]. Nanomaterials (Basel),2018,8(5):305.
[30] GAD M M, RAHOMA A, AL-THOBITY A M, et al. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases [J]. International Journal of Nanomedicine,2016,11:5633-5643. doi: 10.2147/IJN.S120054
[31] GAD M M, ABUALSAUD R, RAHOMA A, et al. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material [J]. International Journal of Nanomedicine,2018,13:283-292. doi: 10.2147/IJN.S152571
[32] REVILLA-LEON M, OZCAN M. Additive manufacturing technologies used for processing polymers: Current status and potential application in prosthetic dentistry [J]. Journal of Prosthodontics,2019,28(2):146-158. doi: 10.1111/jopr.12801
[33] BHARGAV A, SANJAIRAJ V, ROSA V, et al. Applications of additive manufacturing in dentistry: A review [J]. J Biomed Mater Res B Appl Biomater,2018,106(5):2058-2064. doi: 10.1002/jbm.b.33961
[34] SAEED F, MUHAMMAD N, KHAN A S, et al. Prosthodontics dental materials: From conventional to unconventional [J]. Mater Sci Eng C Mater Biol Appl,2020,106:110167. doi: 10.1016/j.msec.2019.110167
[35] GAD M M, AL-THOBITY A M, SHAHIN S Y, et al. Inhibitory effect of zirconium oxide nanoparticles on candida albicans adhesion to repaired polymethyl methacrylate denture bases and interim removable prostheses: A new approach for denture stomatitis prevention [J]. Nternational Journal of Nanomedicine,2017,12:5409-5419.
[36] KAMONKHANTIKUL K, ARKSORNNUKIT M, TAKAHASHI H. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles [J]. Nternational Journal of Nanomedicine,2017,12:2353-2360.
[37] SAEED A, HAIDER A, ZAHID S, et al. In-vitro antifungal efficacy of tissue conditioner-chitosan composites as potential treatment therapy for denture stomatitis [J]. International Jounal of Biological Macromolecules,2019,125:761-766. doi: 10.1016/j.ijbiomac.2018.12.091
[38] SONG R, ZHONG Z, LIN L. Evaluation of chitosan quaternary ammonium salt-modified resin denture base material [J]. International Jounal of Biological Macromolecules,2016,85:102-110. doi: 10.1016/j.ijbiomac.2015.12.052
[39] WEN J, YEH C K, SUN Y. Salivary polypeptide/hyaluronic acid multilayer coatings act as "fungal repellents" and prevent biofilm formation on biomaterials [J]. Journal of Materials Chemistry B,2018,6(10):1452-1457. doi: 10.1039/C7TB02592K
[40] JUNG J, LI L, YEH C K, et al. Amphiphilic quaternary ammonium chitosan/sodium alginate multilayer coatings kill fungal cells and inhibit fungal biofilm on dental biomaterials [J]. Materials Science and Engineering: C,2019,104:109961. doi: 10.1016/j.msec.2019.109961
[41] HABIB E, WANG R, WANG Y, et al. Inorganic fillers for dental resin composites: Present and future [J]. ACS Biomaterials Science & Engineering,2015,2(1):1-11.
[42] LEWIS S H, APP F, LAM S, et al. Effects of systematically varied thiourethane-functionalized filler concentration on polymerization behavior and relevant clinical properties of dental composites[J]. Materials & Design, 2021, 197: 109249.
[43] SONG L, YE Q, GE X, et al. New silyl-functionalized Bis-GMA provides autonomous strengthening without leaching for dental adhesives [J]. Acta Biomaterials,2019,83:130-139. doi: 10.1016/j.actbio.2018.10.033
[44] SONG L, YE Q, GE X, et al. Mimicking nature: Self-strengthening properties in a dental adhesive [J]. Acta Biomaterials,2016,35:138-152. doi: 10.1016/j.actbio.2016.02.019
[45] PEREZ-MONDRAGON A A, CUEVAS-SUAREZ C E, SUAREZ-CASTILLO O R, et al. Evaluation of biocompatible monomers as substitutes for tegdma in resin-based dental composites [J]. Materials Science and Engineering C Materials for Biological Application,2018,93:80-87. doi: 10.1016/j.msec.2018.07.059
[46] HUYANG G, DEBERTIN A E, SUN J. Design and development of self-healing dental composites [J]. Materials & Design,2016,94:295-302.
[47] ZHANG Y, CHEN Y, HU Y, et al. Quaternary ammonium compounds in dental restorative materials [J]. Dental Materials Journal,2018,37(2):183-191. doi: 10.4012/dmj.2017-096
[48] ZHANG R, JONES M M, MOUSSA H, et al. Polymer-antibiotic conjugates as antibacterial additives in dental resins [J]. Biomaterials Science,2018,7(1):287-295.
[49] NATALE L C, ALANIA Y, RODRIGUES M C, et al. Synthesis and characterization of silver phosphate/calcium phosphate mixed particles capable of silver nanoparticle formation by photoreduction [J]. Materials Science and Engineering C: Materials for Biological Application,2017,76:464-471. doi: 10.1016/j.msec.2017.03.102
[50] MELO M A, ORREGO S, WEIR M D, et al. Designing multiagent dental materials for enhanced resistance to biofilm damage at the bonded interface [J]. ACS Applied Materials & Interfaces,2016,8(18):11779-11787.
[51] SHIN S H, YE M K, KIM H S, et al. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells [J]. International Immunopharmacology,2007,7(13):1813-1818. doi: 10.1016/j.intimp.2007.08.025
[52] PARK S, LEE Y K, JUNG M, et al. Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells [J]. Inhalation Toxicology,2007,19(S1):59-65.
[53] HUSSAIN S M, JAVORINA A K, SCHRAND A M, et al. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion [J]. Toxicological Sciences,2006,92(2):456-463. doi: 10.1093/toxsci/kfl020
[54] GE L, LI Q, WANG M, et al. Nanosilver particles in medical applications: Synthesis, performance, and toxicity [J]. Internation Journal of Nanomedicine,2014,9:2399-2407.
[55] RIAZ-AHMED K B, NAGY A M, BROWN R P, et al. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies [J]. Toxicology In Vitro,2017,38:179-192. doi: 10.1016/j.tiv.2016.10.012
[56] SURESH K, NAIDU B, GOVENDER P, et al. Nano silver particles in biomedical and clinical applications: Review [J]. Journal of Pure & Applied Microbiology,2015,9(2):103-112.
[57] LEE K J, NALLATHAMBY P D, BROWNING L M, et al. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos [J]. ACS Nano,2007,1(2):133-143.
[58] JIAO Y, NIU L N, MA S, et al. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance [J]. Progress in Polymer Science,2017,71:53-90. doi: 10.1016/j.progpolymsci.2017.03.001
[59] GUIDANCE D. Guidance for industry considering whether an FDA-regulated product involves the application of nanotechnology [J]. Biotechnology Law Report,2011,30(5):613-616. doi: 10.1089/blr.2011.9814
[60] WANG W, KANNAN P, XUE J, et al. Synthetic phenolic antioxidants, including butylated hydroxytoluene (BHT), in resin-based dental sealants [J]. Environmental Research,2016,151:339-343. doi: 10.1016/j.envres.2016.07.042
[61] MARZOUK T, SATHYANARAYANA S, KIM A S, et al. A systematic review of exposure to bisphenol a from dental treatment [J]. JDR Clinical & Translational Research,2019,4(2):106-115.
[62] XUE J, KANNAN P, KUMOSANI T A, et al. Resin-based dental sealants as a source of human exposure to bisphenol analogues, bisphenol a diglycidyl ether, and its derivatives [J]. Environmental Research,2018,162:35-40. doi: 10.1016/j.envres.2017.12.011
[63] JUN S K, CHA J R, KNOWLES J C, et al. Development of Bis-GMA-free biopolymer to avoid estrogenicity [J]. Dental Materials,2020,36(1):157-166. doi: 10.1016/j.dental.2019.11.016
[64] NGUYEN T, KIM B, KIM Y J, et al. Synthesis of the bio-based alternative to Bis-GMA and its application to photo-polymerizable adhesives [J]. International Journal of Adhesion and Adhesives,2018,80:60-65. doi: 10.1016/j.ijadhadh.2017.10.003
[65] BREGNOCCHI A, ZANNI E, UCCELLETTI D, et al. Graphene-based dental adhesive with anti-biofilm activity [J]. Journal of Nanobiotechnology,2017,15(1):89. doi: 10.1186/s12951-017-0322-1
[66] ESTEBAN FLOREZ F L E, HIERS R D, LARSON P, et al. Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles [J]. Materials Science and Engineering C: Materials for Biological Application,2018,93:931-943. doi: 10.1016/j.msec.2018.08.060
[67] STEWART C A, HONG J H, HATTON B D, et al. Responsive antimicrobial dental adhesive based on drug-silica co-assembled particles [J]. Acta Biomaterials,2018,76:283-294. doi: 10.1016/j.actbio.2018.06.032
[68] WANG Z, OUYANG Y, WU Z, et al. A novel fluorescent adhesive-assisted biomimetic mineralization [J]. Nanoscale,2018,10(40):18980-18987. doi: 10.1039/C8NR02078G
[69] WU Z, WANG X, WANG Z, et al. Self-etch adhesive as a carrier for ACP nanoprecursors to deliver biomimetic remineralization [J]. ACS Applied Materials & Interfaces,2017,9(21):17710-17717.
[70] LEE S B, GONZALEZ-CABEZAS C, KIM K M, et al. Catechol-functionalized synthetic polymer as a dental adhesive to contaminated dentin surface for a composite restoration [J]. Biomacromolecules,2015,16(8):2265-2275. doi: 10.1021/acs.biomac.5b00451
[71] LEE D, BAE H, AHN J, et al. Catechol-thiol-based dental adhesive inspired by underwater mussel adhesion [J]. Acta Biomaterials,2020,103:92-101. doi: 10.1016/j.actbio.2019.12.002
[72] XU R, YU F, HUANG L, et al. Isocyanate-terminated urethane-based dental adhesive bridges dentinal matrix collagen with adhesive resin [J]. Acta Biomaterials,2019,83:140-152. doi: 10.1016/j.actbio.2018.11.007
[73] SUN J, PETERSEN E J, WATSON S S, et al. Biophysical characterization of functionalized titania nanoparticles and their application in dental adhesives [J]. Acta Biomaterials,2017,53:585-597. doi: 10.1016/j.actbio.2017.01.084
[74] HAN B, XIA W, LIU K, et al. Janus nanoparticles for improved dentin bonding [J]. ACS Applied Materials & Interfaces,2018,10(10):8519-8526.
[75] CHOUIRFA H, BOULOUSSA H, MIGONNEY V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications [J]. Acta Biomaterials,2019,83:37-54. doi: 10.1016/j.actbio.2018.10.036
[76] HUANG L, LOU Y, ZHANG D, et al. D-Cysteine functionalised silver nanoparticles surface with a “disperse-then-kill” antibacterial synergy [J]. Chemical Engineering Journal,2020,381:122662. doi: 10.1016/j.cej.2019.122662
[77] JENKINS J, MANTELL J, NEAL C, et al. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress [J]. Nature Communcation,2020,11(1):1626. doi: 10.1038/s41467-020-15471-x
[78] SOUZA J C M, SORDI M B, KANAZAWA M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration [J]. Acta Biomaterials,2019,94:112-131. doi: 10.1016/j.actbio.2019.05.045
[79] SHAH F A, THOMSEN P, PALMQUIST A. Osseointegration and current interpretations of the bone-implant interface [J]. Acta Biomaterials,2019,84:1-15. doi: 10.1016/j.actbio.2018.11.018
[80] KIM C S, KIM J H, KIM B, et al. A specific groove pattern can effectively induce osteoblast differentiation [J]. Advanced Functional Materials,2017,27(44):1703569. doi: 10.1002/adfm.201703569
[81] ALAKPA E V, BURGESS K E V, CHUNG P, et al. Nacre topography produces higher crystallinity in bone than chemically induced osteogenesis [J]. ACS Nano,2017,11(7):6717-6727. doi: 10.1021/acsnano.7b01044
[82] SHI Y, WANG L, NIU Y, et al. Fungal component coating enhances titanium implant-bone integration [J]. Advanced Functional Materials,2018,28(46):1804483. doi: 10.1002/adfm.201804483
[83] ZHANG C, MIYATAKE H, WANG Y, et al. A bioorthogonal approach for the preparation of a titanium-binding insulin-like growth-factor-1 derivative by using tyrosinase [J]. Angewandte Chemie International Edition English,2016,55(38):11447-11451. doi: 10.1002/anie.201603155
[84] YUAN Z, TAO B, HE Y, et al. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation [J]. Biomaterials,2019,217:119290. doi: 10.1016/j.biomaterials.2019.119290
[85] LIAO J, CHEN W, YANG M, et al. Conducting photopolymers on orthopeadic implants having a switch of priority between promoting osteogenic and antibacterial activity [J]. Materials Horizons,2018,5(3):545-552. doi: 10.1039/C8MH00285A
[86] XU X, ZHANG D, GAO S, et al. Multifunctional biomaterial coating based on bio-inspired polyphosphate and lysozyme supramolecular nanofilm [J]. Biomacromolecules,2018,19(6):1979. doi: 10.1021/acs.biomac.8b00002
[87] YANG Y, YANG B, LI M, et al. Salivary acquired pellicle-inspired DpSpSEEKC peptide for the restoration of demineralized tooth enamel [J]. Biomedical Materials,2017,12:025007.
[88] YANG X, YANG B, HE L, et al. Bioinspired peptide-decorated tannic acid for in situ remineralization of tooth enamel: In vitro and in vivo evaluation[J]. ACS Biomaterials Science & Engineering, 2017. DOI:10.1021/acsbiomaterials.7b00623.
[89] YANG X, HUANG F, XU X, et al. Bioinspired from salivary acquired pellicle: A multifunctional coating for biominerals [J]. Chemistry of Materials,2017,29(13):5663-5670. doi: 10.1021/acs.chemmater.7b01465
[90] YANG X, LI Z, XIAO H, et al. A universal and ultrastable mineralization coating bioinspired from biofilms [J]. Advanced Functional Materials,2018,28(32):1802730. doi: 10.1002/adfm.201802730
[91] LIU Z, MA S, LU X, et al. Reinforcement of epithelial sealing around titanium dental implants by chimeric peptides [J]. Chemical Engineering Journal,2019,356:117-129. doi: 10.1016/j.cej.2018.09.004
[92] NAJEEB S, ZAFAR M S, KHURSHID Z, et al. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics [J]. Journal of Prosthodontic Research,2016,60(1):12-19. doi: 10.1016/j.jpor.2015.10.001
[93] BECHIR E S, BECHIR A, GIOGA C, et al. The advantages of biohpp polymer as superstructure material in oral implantology [J]. Materiale Plastice,2016,53(3):394-398.
[94] MO S, MEHRJOU B, TANG K, et al. Dimensional-dependent antibacterial behavior on bioactive micro/nano polyetheretherketone (PEEK) arrays [J]. Chemical Engineering Journal,2020,392:123736. doi: 10.1016/j.cej.2019.123736
[95] LIU W, LI J, CHENG M, et al. A surface-engineered polyetheretherketone biomaterial implant with direct and immunoregulatory antibacterial activity against methicillin-resistant staphylococcus aureus [J]. Biomaterials,2019,208:8-20. doi: 10.1016/j.biomaterials.2019.04.008
[96] XU X, LI Y, WANG L, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application [J]. Biomaterials,2019,212:98-114. doi: 10.1016/j.biomaterials.2019.05.014
[97] SIMPSON C R, KELLY H M, MURPHY C M. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair [J]. Advanced Drug Delivery Reviews,2020,160:212-233. doi: 10.1016/j.addr.2020.10.011
[98] SUBRAMANIAM S, FANG Y H, SIVASUBRAMANIAN S, et al. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration [J]. Biomaterials,2016,74:99-108. doi: 10.1016/j.biomaterials.2015.09.044
[99] LEE D, CHOI E J, LEE S E, et al. Injectable biodegradable gelatin-methacrylate/β-tricalcium phosphate composite for the repair of bone defects [J]. Chemical Engineering Journal,2019,365:30-39. doi: 10.1016/j.cej.2019.02.020
[100] LI X, LI S, QI H, et al. Early healing of alveolar bone promoted by microRNA-21-loaded nanoparticles combined with Bio-Oss particles [J]. Chemical Engineering Journal,2020,401:126026. doi: 10.1016/j.cej.2020.126026
[101] HASANI-SADRABADI M M, SARRION P, POURAGHAEI S, et al. An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats[J]. Science Translational Medicine, 2020, 12(534): eaay6853.
[102] ABDELAZIZ D, HEFNAWY A, AL-WAKEEL E, et al. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity [J]. Journal of Advanced Research,2020,28:51-62.
[103] ZHENG X, KE X, YU P, et al. A facile strategy to construct silk fibroin based gtr membranes with appropriate mechanical performance and enhanced osteogenic capacity [J]. Journal of Materials Chemistry B,2020,8(45):10407-10415. doi: 10.1039/D0TB01962C
[104] LIU X, HE X, JIN D, et al. A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration [J]. Acta Biomaterials,2020,108:207-222. doi: 10.1016/j.actbio.2020.03.044
[105] NASAJPOUR A, ANSARI S, RINOLDI C, et al. A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics [J]. Advanced Functional Materials,2018,28(3):1703437. doi: 10.1002/adfm.201703437
[106] HASANI-SADRABADI M M, SARRION P, NAKATSUKA N, et al. Hierarchically patterned polydopamine-containing membranes for periodontal tissue engineering [J]. ACS Nano,2019,13(4):3830-3838. doi: 10.1021/acsnano.8b09623
[107] XU Y, ZHAO S, WENG Z, et al. Jelly-inspired injectable guided tissue regeneration strategy with shape auto-matched and dual-light-defined antibacterial/osteogenic pattern switch properties[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54497-54506.
[108] ZHANG S, HE L, YANG Y, et al. Effective in situ repair and bacteriostatic material of tooth enamel based on salivary acquired pellicle inspired oligomeric procyanidins [J]. Polymer Chemistry,2016,7(44):6761-6769. doi: 10.1039/C6PY01362G
[109] WEN Z, CHEN J, WANG H, et al. Abalone water-soluble matrix for self-healing biomineralization of tooth defects [J]. Materials Science and Engineering C: Materials Biological Application,2016,67:182-187. doi: 10.1016/j.msec.2016.05.015
[110] LIANG K, XIAO S, SHI W, et al. 8dss-promoted remineralization of demineralized dentin in vitro [J]. Journal of Materials Chemistry B,2015,3(33):6763-6772. doi: 10.1039/C5TB00764J
[111] WU X, ZHAO X, LI Y, et al. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method [J]. Materials Science and Engineering C: Materials Biological Application,2015,54:150-157. doi: 10.1016/j.msec.2015.05.006
[112] WANG Y, HU D, CUI J, et al. Unraveling the mechanism for an amelogenin-derived peptide regulated hydroxyapatite mineralization via specific functional domain identification [J]. Journal of Materials Chemistry B,2020,8(45):10373-10383. doi: 10.1039/D0TB00949K
[113] CHEN Z, MIAO Z, ZHANG P, et al. Bioinspired enamel-like oriented minerals on general surfaces: Towards improved mechanical properties [J]. Journal of Materials Chemistry B,2019,7(34):5237-5244. doi: 10.1039/C9TB00676A
[114] SHAO C, JIN B, MU Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth [J]. Science Advances,2019,5(8):eaaw9569. doi: 10.1126/sciadv.aaw9569
[115] WANG D, DENG J, DENG X, et al. Controlling enamel remineralization by amyloid-like amelogenin mimics [J]. Advanced Materials,2020,32(31):e2002080. doi: 10.1002/adma.202002080
[116] YU H P, ZHU Y J, LU B Q. Dental enamel-mimetic large-sized multi-scale ordered architecture built by a well controlled bottom-up strategy [J]. Chemical Engineering Journal,2019,360:1633-1645. doi: 10.1016/j.cej.2018.11.025
[117] XU X, CHEN X, LI J. Natural protein bioinspired materials for regeneration of hard tissues [J]. Journal of Materials Chemistry B,2020,8(11):2199-2215.
[118] WU D, YANG J, LI J, et al. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel [J]. Biomaterials,2013,34(21):5036-5047. doi: 10.1016/j.biomaterials.2013.03.053
[119] XIN J, CHEN T, LIN Z, et al. Phosphorylated dendronized poly(amido amine)s as protein analogues for directing hydroxylapatite biomineralization [J]. Chemical Communication,2014,50(49):6491-6493. doi: 10.1039/c4cc00617h
[120] ZHANG H, YANG J, LIANG K, et al. Effective dentin restorative material based on phosphate-terminated dendrimer as artificial protein [J]. Colloids & Surfaces B: Biointerfaces,2015,128:304-314.
[121] ZHOU Y, YANG J, LIN Z, et al. Triclosan-loaded poly(amido amine) dendrimer for simultaneous treatment and remineralization of human dentine [J]. Colloids & Surfaces B: Biointerfaces,2014,115:237-243.
[122] CHEN M, YANG J, LI J, et al. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin [J]. Acta Biomaterials,2014,10(10):4437-4446. doi: 10.1016/j.actbio.2014.05.016
[123] LI J, YANG J, LI J, et al. Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer [J]. Biomaterials,2013,34(28):6738-6747. doi: 10.1016/j.biomaterials.2013.05.046
[124] ZHU B G, LI X F, XU X Y, et al. One-step phosphorylated poly(amide-amine) dendrimer loaded with apigenin for simultaneous remineralization and antibacterial of dentine [J]. Colloids & Surfaces B: Biointerfaces,2018,172:760-768.
[125] YU J, YANG H, LI K, et al. Development of epigallocatechin-3-gallate-encapsulated nanohydroxyapatite/mesoporous silica for therapeutic management of dentin surface [J]. ACS Applied Materials & Interfaces,2017,9(31):25796-25807.
[126] LI C, LU D, DENG J, et al. Amyloid-like rapid surface modification for antifouling and in-depth remineralization of dentine tubules to treat dental hypersensitivity [J]. Advanced Materials,2019,31(46):e1903973. doi: 10.1002/adma.201903973
[127] YANG X, MA Y, GUO W, et al. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration [J]. Theranostics,2019,9(9):2694-2711. doi: 10.7150/thno.31801
[128] ATHIRASALA A, TAHAYERI A, THRIVIKRAMAN G, et al. A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry [J]. Biofabrication,2018,10(2):024101. doi: 10.1088/1758-5090/aa9b4e
[129] CHEN J, LIAO L, LAN T, et al. Treated dentin matrix-based scaffolds carrying TGF-β1/BMP4 for functional bio-root regeneration [J]. Applied Materials Today,2020,20:100742. doi: 10.1016/j.apmt.2020.100742
[130] CHEN G, CHEN J, YANG B, et al. Combination of aligned PLGA/gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration [J]. Biomaterials,2015,52:56-70. doi: 10.1016/j.biomaterials.2015.02.011