[1] SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors Begin? [J]. Science,2014,343(6):1210-1211.
[2] YU Z, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions [J]. Energy & Environmental Science,2015,8(3):702-730.
[3] YAN J, WANG Q, WEI T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities [J]. Advanced Energy Materials,2014,4:1300816. doi: 10.1002/aenm.201300816
[4] REN J, LI L, CHEN C, et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery [J]. Advanced Materials,2013,25(8):1155-1159. doi: 10.1002/adma.201203445
[5] WANG X. F, WANG D. Z, LIANG L Electrochemical capacitor using nickel oxide/carbon nanotube composites electrode [J]. Journal of Inorganic Materials,2003,18(2):331-336.
[6] El-KADY M F, KANER R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J]. Nature Communications,2013,4:1475. doi: 10.1038/ncomms2446
[7] BONACCORSO F, COLOMBO L, YU G, et al. Graphene related two-dimensional crystals and hybrid systems for energy conversion and storage [J]. Science,2015,347(6217):1246501. doi: 10.1126/science.1246501
[8] CHHOWALLA M, SHIN H. S, EDA G, et al The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. Nature Chemistry,2013,5:263-275. doi: 10.1038/nchem.1589
[9] LIU J, ZHOU Y, XIE Z, et al. Conjugated copper-catecholate framework electrodes for efficient energy Storage [J]. Angewandte Chemie: International Edition,2020,59(3):1081-1086. doi: 10.1002/anie.201912642
[10] SHEBERLA D, BACHMAN J C, ELIAS J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance [J]. Nature Materials,2017,16:220-224. doi: 10.1038/nmat4766
[11] WU Q, XU Y, YAO Z, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films [J]. ACS Nano,2010,4(4):1963-1970. doi: 10.1021/nn1000035
[12] LIU T, FINN L, YU M, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability [J]. Nano Letters,2014,14(5):2522-2527. doi: 10.1021/nl500255v
[13] SONG Y, LIU T, XU X et al. Pushing the cycling stability limit of polypyrrole for supercapacitors [J]. Advanced Functional Materials,2015,25(29):4626-4632. doi: 10.1002/adfm.201501709
[14] OTERO T F, MARTINEZ J G. Structural and biomimetic chemical kinetics: kinetic magnitudes include structural information [J]. Advanced Functional Materials,2013,23(4):404-416. doi: 10.1002/adfm.201200719
[15] SUN S, ZHUANG X, WANG L, et al. Azulene-bridged coordinated framework based quasi-molecular rectifier [J]. Journal of Materials Chemistry C,2017,5(9):2223-2229. doi: 10.1039/C6TC05362A
[16] HUANG J, HUANG S, ZHAO Y, et al. Azulene-based molecules, polymers, and frameworks for optoelectronic and energy applications [J]. Small Methods,2020,4(10):2000628. doi: 10.1002/smtd.202000628
[17] STEJSKAL J, GILBERT R G. Polyaniline. Preparation of a conducting polymer (IUPAC technical report) [J]. Pure Appl Chem,2002,74:857-867. doi: 10.1351/pac200274050857
[18] YANG C, SCHELLHAMMER K. S, ORTMANN F, et al Coordination polymer framework based on-Chip micro-supercapacitors with AC line-filtering performance [J]. Angewandte Chemie: International Edition,2017,56(14):3920-3924. doi: 10.1002/anie.201700679
[19] ZHUANG X, MAI Y, WU D, et al. Two-dimensional soft nanomaterials: a fascinating world of materials [J]. Advanced Materials,2015,27(3):403-427. doi: 10.1002/adma.201401857
[20] ZHU J, YANG C, LU C, et al. Two-dimensional porous polymers: from sandwich-like structure to layered skeleton [J]. Accounts of Chemical Research,2018,51(12):3191-3202. doi: 10.1021/acs.accounts.8b00444
[21] ZHENG C, ZHU J, YANG C, et al. The art of two-dimensional soft nanomaterials [J]. Science China Chemistry,2019,62(9):1145-1193. doi: 10.1007/s11426-019-9477-y
[22] 姜恺悦, 杨重庆, 庄小东. 导电二维配位聚合物框架材料再能源及转化领域的应用 [J]. 功能高分子学报,2019,32(2):155-177.JIANG Kaiyue, YANG Chongqing, ZHUANG Xiaodong. Conductive two-dimensional coordination polymer frameworks for energy conversion and storage [J]. Journal of Functional Polymers,2019,32(2):155-177.
[23] 封博谞, 庄小东. 碳基介熵材料: 理论与实验 [J]. 化学学报,2020,78(9):833-847.FENG B,ZHUANG X. Carbon-enriched meso-entropy materials: from theory to cases [J]. Acta Chimica Sinica,2020,78(9):833-847.
[24] 康佳玲, 王红星, 邱丰, 等. sp2碳连接的二维聚合物 [J]. 功能高分子学报,2021,34(1):5-25.KANG J, WANG H, QIU F, et al. Two-dimensional polymers based on sp2-hybridized-carbon connections [J]. Journal of Functional Polymers,2021,34(1):5-25.
[25] ALLENDORF M, DONG R, FENG X, et al. Electronic devices using open framework materials [J]. Chemical Reviews,2020,120(16):8581-8640. doi: 10.1021/acs.chemrev.0c00033
[26] CONG H, REN X, Wang P, et al. Flexible graphene-polyaniline composite paper for high-performance supercapacitor [J]. Energy & Environmental Science,2013,6(4):1185-1191.
[27] MILLER J R, OUTLAW R A, HOLLOWAY B C. Graphene double-layer capacitor with ac Line-Filtering performance [J]. Science,2010,329(5999):1637-1639. doi: 10.1126/science.1194372
[28] WU Z, TAN Y, ZHENG S, et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors [J]. Journal of the American Chemical Society,2017,139(12):4506-4512. doi: 10.1021/jacs.7b00805
[29] WU Z, LIU Z, PARVEZ K, et al. Ultrathin printable graphene supercapacitors with AC Line-Filtering Performance [J]. Advanced Materials,2015,27(24):3669-3675. doi: 10.1002/adma.201501208
[30] El-KADY M F, STRONG V, DUBLIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors [J]. Science,2012,335(6074):1326-1330. doi: 10.1126/science.1216744
[31] PECH D, BRUNET M, DUROU H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon [J]. Nature Nanotechnology,2010,5:651-654. doi: 10.1038/nnano.2010.162