[1] ANJUM A, YAZID M D, FAUZI D M, et al. Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms [J]. International Journal of Molecular Sciences,2020,21(20):7533. doi: 10.3390/ijms21207533
[2] DIMITRIJEVIC M R, KAKULAS B A. Spinal cord injuries, human neuropathology and neurophysiology [J]. Acta Myol,2020,39(4):353-358.
[3] YUAN S, SHI Z, CAO F, et al. Epidemiological features of spinal cord injury in china: A systematic review [J]. Frontiers in Neurology,2018,9:683. doi: 10.3389/fneur.2018.00683
[4] KATOH H, YOKOTA K, FEHLINGS M G. Regeneration of spinal cord connectivity through stem cell transplantation and biomaterial scaffolds [J]. Frontiers in Cellular Neuroscience,2019,13:248. doi: 10.3389/fncel.2019.00248
[5] DIMITRIJEVIC M R, DANNER S M, MAYR W. Neurocontrol of movement in humans with spinal cord injury [J]. Artificial Organs,2015,39(10):823-833. doi: 10.1111/aor.12614
[6] MIEKISIAK G, LATKA D, JARMUZEK P, et al. Steroids in acute spinal cord injury: All but gone within 5 years [J]. World Neurosurgery,2019,122:e467-e471. doi: 10.1016/j.wneu.2018.09.239
[7] DVORAK M F, NOONAN V K, FALLAH N, et al. The influence of time from injury to surgery on motor recovery and length of hospital stay in acute traumatic spinal cord injury: An observational Canadian cohort study [J]. J Neurotrauma,2015,32(9):645-654. doi: 10.1089/neu.2014.3632
[8] LAI B Q, CHE M T, FENG B, et al. Tissue-engineered neural network graft relays excitatory signal in the completely transected canine spinal cord [J]. Adv Sci (Weinh),2019,6(22):1901240. doi: 10.1002/advs.201901240
[9] LI G, CHE M T, ZENG X, et al. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury [J]. Journal of Biomedical Materials Research Part A,2018,106(8):2158-2170. doi: 10.1002/jbm.a.36414
[10] MA Y H, ZENG X, QIU X C, et al. Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord [J]. Biomaterials,2018,160:37-55. doi: 10.1016/j.biomaterials.2018.01.015
[11] SILVA N A, SOUSA N, REIS R L, et al. From basics to clinical: A comprehensive review on spinal cord injury [J]. Progress in Neurobiology,2014,114:25-57. doi: 10.1016/j.pneurobio.2013.11.002
[12] ELLIOTT D I, TAM R, SEFTON M V, et al. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system [J]. Journal of Controlled Release,2014,190:219-227. doi: 10.1016/j.jconrel.2014.05.040
[13] SENSHARMA P, MADHUMATHI G, JAYANT R D, et al. Biomaterials and cells for neural tissue engineering: Current choices [J]. Mater Sci Eng C Mater Biol Appl,2017,77:1302-1315. doi: 10.1016/j.msec.2017.03.264
[14] NGUYEN A T, SATHE S R, YIM E K. From nano to micro: Topographical scale and its impact on cell adhesion, morphology and contact guidance [J]. J Phys Condens Matter,2016,28(18):183001. doi: 10.1088/0953-8984/28/18/183001
[15] ERMIS M, ANTMEN E, HASIRCI V. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective [J]. Bioact Mater,2018,3(3):355-369. doi: 10.1016/j.bioactmat.2018.05.005
[16] ZHANG Q, SHI B, DING J, et al. Polymer scaffolds facilitate spinal cord injury repair [J]. Acta Biomaterialia,2019,88:57-77. doi: 10.1016/j.actbio.2019.01.056
[17] FUHRMANN T, ANANDAKUMARAN P N, SHOICHET M S. Combinatorial therapies after spinal cord injury: How can biomaterials help? [J]. Advanced Healthcare Materials,2017,6(10):1601130. doi: 10.1002/adhm.201601130
[18] MADL C M, LESAVAGE B L, DEWI R E, et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling [J]. Nature Materials,2017,16(12):1233-1242. doi: 10.1038/nmat5020
[19] SRIDHARAN R, CAVANAGH B, CAMERON A R, et al. Material stiffness influences the polarization state, function and migration mode of macrophages [J]. Acta Biomaterialia,2019,89:47-59. doi: 10.1016/j.actbio.2019.02.048
[20] TAY C Y, IRVINE S A, BOEY F Y, et al. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications [J]. Small,2011,7(10):1361-1378. doi: 10.1002/smll.201100046
[21] MILLER C, JEFTINIJA S, MALLAPRAGADA S. Synergistic effects of physical and chemical guidance cues on neurite alignment and outgrowth on biodegradable polymer substrates [J]. Tissue Engineering,2002,8(3):367-378. doi: 10.1089/107632702760184646
[22] ZHANG D, WU S, FENG J, et al. Micropatterned biodegradable polyesters clicked with CQAASIKVAV promote cell alignment, directional migration, and neurite outgrowth [J]. Acta Biomaterialia,2018,74:143-155. doi: 10.1016/j.actbio.2018.05.018
[23] KRIPARAMANAN R, ASWATH P, ZHOU A, et al. Nanotopography: Cellular responses to nanostructured materials [J]. J Nanosci Nanotechnol,2006,6(7):1905-1919. doi: 10.1166/jnn.2006.330
[24] KOEGLER P, CLAYTON A, THISSEN H, et al. The influence of nanostructured materials on biointerfacial interactions [J]. Adv Drug Deliv Rev,2012,64(15):1820-1839. doi: 10.1016/j.addr.2012.06.001
[25] HE L, TIAN L, SUN Y, et al. Nano-engineered environment for nerve regeneration: Scaffolds, functional molecules and stem cells [J]. Curr Stem Cell Res Ther,2016,11(8):605-617. doi: 10.2174/1574888X10666151001114735
[26] DU B L, XIONG Y, ZENG C G, et al. Transplantation of artificial neural construct partly improved spinal tissue repair and functional recovery in rats with spinal cord transection [J]. Brain Research,2011,1400:87-98. doi: 10.1016/j.brainres.2011.05.019
[27] GHASEMI-MOBARAKEH L, PRABHAKARAN M P, MORSHED M, et al. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering [J]. J Tissue Eng Regen Med,2011,5(4):e17-e35. doi: 10.1002/term.383
[28] THEOCHARIS A D, SKANDALIS S S, GIALELI C, et al. Extracellular matrix structure [J]. Adv Drug Deliv Rev,2016,97:4-27. doi: 10.1016/j.addr.2015.11.001
[29] MARQUES C F, DIOGO G S, PINA S, et al. Collagen-based bioinks for hard tissue engineering applications: A comprehensive review [J]. J Mater Sci Mater Med,2019,30(3):32. doi: 10.1007/s10856-019-6234-x
[30] LIAO S, NGIAM M, CHAN C K, et al. Fabrication of nano-hydroxyapatite/collagen/osteonectin composites for bone graft applications [J]. Biomedical Materials,2009,4(2):25019. doi: 10.1088/1748-6041/4/2/025019
[31] YEH J Z, WANG D H, CHERNG J H, et al. A collagen-based scaffold for promoting neural plasticity in a rat model of spinal cord injury [J]. Polymers (Basel),2020,12(10):2245. doi: 10.3390/polym12102245
[32] KOURGIANTAKI A, TZERANIS D S, KARALI K, et al. Neural stem cell delivery via porous collagen scaffolds promotes neuronal differentiation and locomotion recovery in spinal cord injury [J]. NPJ Regen Med,2020,5:12. doi: 10.1038/s41536-020-0097-0
[33] LI X, DAI J. Bridging the gap with functional collagen scaffolds: tuning endogenous neural stem cells for severe spinal cord injury repair [J]. Biomater Sci,2018,6(2):265-271. doi: 10.1039/C7BM00974G
[34] HAN S, WANG B, JIN W, et al. The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine [J]. Biomaterials,2015,41:89-96. doi: 10.1016/j.biomaterials.2014.11.031
[35] HAN S, YIN W, LI X, et al. Pre-clinical evaluation of CBD-NT3 modified collagen scaffolds in completely spinal cord transected non-human primates [J]. J Neurotrauma,2019,36(15):2316-2324. doi: 10.1089/neu.2018.6078
[36] CHEN X, ZHAO Y, LI X, et al. Functional multichannel poly(propylene fumarate)-collagen scaffold with collagen-binding neurotrophic factor 3 promotes neural regeneration after transected spinal cord injury [J]. Advanced Healthcare Materials,2018,7(14):e1800315. doi: 10.1002/adhm.201800315
[37] YANG Y, FAN Y, ZHANG H, et al. Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury [J]. Biomaterials,2021,269:120479. doi: 10.1016/j.biomaterials.2020.120479
[38] LIU W, XU B, XUE W, et al. A functional scaffold to promote the migration and neuronal differentiation of neural stem/progenitor cells for spinal cord injury repair [J]. Biomaterials,2020,243:119941. doi: 10.1016/j.biomaterials.2020.119941
[39] ONUMA-UKEGAWA M, BHATT K, HIRAI T, et al. Bone marrow stromal cells combined with a honeycomb collagen sponge facilitate neurite elongation in vitro and neural restoration in the hemisected rat spinal cord [J]. Cell Transplantation,2015,24(7):1283-1297. doi: 10.3727/096368914X682134
[40] YUAN N, TIAN W, SUN L, et al. Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair [J]. Neural Regeneration Research,2014,9(10):1014-1019. doi: 10.4103/1673-5374.133160
[41] MARCHAND R, WOERLY S. Transected spinal cords grafted with in situ self-assembled collagen matrices [J]. Neuroscience,1990,36(1):45-60. doi: 10.1016/0306-4522(90)90350-D
[42] MA W, FITZGERALD W, LIU Q Y, et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels [J]. Experimental Neurology,2004,190(2):276-288. doi: 10.1016/j.expneurol.2003.10.016
[43] PRABHAKARAN M P, VENUGOPAL J R, RAMAKRISHNA S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering [J]. Biomaterials,2009,30(28):4996-5003. doi: 10.1016/j.biomaterials.2009.05.057
[44] LABRADOR R O, BUTI M, NAVARRO X. Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair [J]. Experimental Neurology,1998,149(1):243-252. doi: 10.1006/exnr.1997.6650
[45] YOSHII S, OKA M, SHIMA M, et al. Bridging a spinal cord defect using collagen filament [J]. Spine,2003,28(20):2346-2351. doi: 10.1097/01.BRS.0000085302.95413.16
[46] ALTINOVA H, HAMMES S, PALM M, et al. Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury [J]. Biomedical Materials,2020,15(1):15012. doi: 10.1088/1748-605X/ab5e52
[47] ALTINOVA H, HAMMES S, PALM M, et al. Fibroadhesive scarring of grafted collagen scaffolds interferes with implant-host neural tissue integration and bridging in experimental spinal cord injury [J]. Regen Biomater,2019,6(2):75-87. doi: 10.1093/rb/rbz006
[48] HO M T, TEAL C J, SHOICHET M S. A hyaluronan/methylcellulose-based hydrogel for local cell and biomolecule delivery to the central nervous system [J]. Brain Research Bulletin,2019,148:46-54. doi: 10.1016/j.brainresbull.2019.03.005
[49] JENSEN G, HOLLOWAY J L, STABENFELDT S E. Hyaluronic acid biomaterials for central nervous system regenerative medicine [J]. Cells,2020,9(9):2113. doi: 10.3390/cells9092113
[50] LAM J, TRUONG N F, SEGURA T. Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds [J]. Acta Biomaterialia,2014,10(4):1571-1580. doi: 10.1016/j.actbio.2013.07.025
[51] MENG F, MODO M, BADYLAK S F. Biologic scaffold for CNS repair [J]. Regenerative Medicine,2014,9(3):367-383. doi: 10.2217/rme.14.9
[52] ZAREI-KHEIRABADI M, SADROSADAT H, MOHAMMADSHIRAZI A, et al. Human embryonic stem cell-derived neural stem cells encapsulated in hyaluronic acid promotes regeneration in a contusion spinal cord injured rat [J]. International Journal of Biological Macromolecules,2020,148:1118-1129. doi: 10.1016/j.ijbiomac.2020.01.219
[53] THOMPSON R E, PARDIECK J, SMITH L, et al. Effect of hyaluronic acid hydrogels containing astrocyte-derived extracellular matrix and/or V2a interneurons on histologic outcomes following spinal cord injury [J]. Biomaterials,2018,162:208-223. doi: 10.1016/j.biomaterials.2018.02.013
[54] KHAING Z Z, MILMAN B D, VANSCOY J E, et al. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury [J]. Journal of Neural Engineering,2011,8(4):46033. doi: 10.1088/1741-2560/8/4/046033
[55] ZAVISKOVA K, TUKMACHEV D, DUBISOVA J, et al. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair [J]. Journal of Biomedical Materials Research Part A,2018,106(4):1129-1140. doi: 10.1002/jbm.a.36311
[56] HE Z, ZANG H, ZHU L, et al. An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury [J]. Int J Nanomedicine,2019,14:721-732. doi: 10.2147/IJN.S187854
[57] KUTIKOV A B, MOORE S W, LAYER R T, et al. Method and apparatus for the automated delivery of continuous neural stem cell trails into the spinal cord of small and large animals [J]. Neurosurgery,2019,85(4):560-573. doi: 10.1093/neuros/nyy379
[58] HU M, SABELMAN E E, TSAI C, et al. Improvement of Schwann cell attachment and proliferation on modified hyaluronic acid strands by polylysine [J]. Tissue Engineering,2000,6(6):585-593. doi: 10.1089/10763270050199532
[59] TUKMACHEV D, FOROSTYAK S, KOCI Z, et al. Injectable extracellular matrix hydrogels as scaffolds for spinal cord injury repair [J]. Tissue Eng Part A,2016,22(3-4):306-317. doi: 10.1089/ten.tea.2015.0422
[60] MEDBERRY C J, CRAPO P M, SIU B F, et al. Hydrogels derived from central nervous system extracellular matrix [J]. Biomaterials,2013,34(4):1033-1040. doi: 10.1016/j.biomaterials.2012.10.062
[61] GUO S Z, REN X J, WU B, et al. Preparation of the acellular scaffold of the spinal cord and the study of biocompatibility [J]. Spinal Cord,2010,48(7):576-581. doi: 10.1038/sc.2009.170
[62] CRAPO P M, TOTTEY S, SLIVKA P F, et al. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering [J]. Tissue Eng Part A,2014,20(1-2):313-323. doi: 10.1089/ten.tea.2013.0186
[63] HONG J Y, SEO Y, DAVAA G, et al. Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury [J]. Acta Biomaterialia,2020,101:357-371. doi: 10.1016/j.actbio.2019.11.012
[64] CERQUEIRA S R, LEE Y S, CORNELISON R C, et al. Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury [J]. Biomaterials,2018,177:176-185. doi: 10.1016/j.biomaterials.2018.05.049
[65] XU Y, ZHOU J, LIU C, et al. Understanding the role of tissue-specific decellularized spinal cord matrix hydrogel for neural stem/progenitor cell microenvironment reconstruction and spinal cord injury [J]. Biomaterials,2021,268:120596. doi: 10.1016/j.biomaterials.2020.120596
[66] YANG T L. Chitin-based materials in tissue engineering: Applications in soft tissue and epithelial organ [J]. International Journal of Molecular Sciences,2011,12(3):1936-1963. doi: 10.3390/ijms12031936
[67] GNAVI S, BARWIG C, FREIER T, et al. The use of chitosan-based scaffolds to enhance regeneration in the nervous system [J]. International Review of Neurobiology,2013,109:1-62.
[68] HU X, ZHOU X, LI Y, et al. Application of stem cells and chitosan in the repair of spinal cord injury [J]. International Journal of Developmental Neuroscience,2019,76:80-85. doi: 10.1016/j.ijdevneu.2019.07.005
[69] CHENG H, HUANG Y C, CHANG P T, et al. Laminin-incorporated nerve conduits made by plasma treatment for repairing spinal cord injury [J]. Biochem Biophys Res Commun,2007,357(4):938-944. doi: 10.1016/j.bbrc.2007.04.049
[70] YANG Z, ZHANG A, DUAN H, et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury [J]. Proc Natl Acad Sci USA,2015,112(43):13354-13359. doi: 10.1073/pnas.1510194112
[71] JI W C, LI M, JIANG W T, et al. Protective effect of brain-derived neurotrophic factor and neurotrophin-3 overexpression by adipose-derived stem cells combined with silk fibroin/chitosan scaffold in spinal cord injury [J]. Neurological Research,2020,42(5):361-371. doi: 10.1080/01616412.2020.1735819
[72] ZHANG J, CHENG T, CHEN Y, et al. A chitosan-based thermosensitive scaffold loaded with bone marrow-derived mesenchymal stem cells promotes motor function recovery in spinal cord injured mice [J]. Biomedical Materials,2020,15(3):35020. doi: 10.1088/1748-605X/ab785f
[73] ROWLEY J A, MADLAMBAYAN G, MOONEY D J. Alginate hydrogels as synthetic extracellular matrix materials [J]. Biomaterials,1999,20(1):45-53. doi: 10.1016/S0142-9612(98)00107-0
[74] BOZZA A, COATES E E, INCITTI T, et al. Neural differentiation of pluripotent cells in 3D alginate-based cultures [J]. Biomaterials,2014,35(16):4636-4645. doi: 10.1016/j.biomaterials.2014.02.039
[75] HOSSEINI S M, SHARAFKHAH A, KOOHI-HOSSEINABADI O, et al. Transplantation of neural stem cells cultured in alginate scaffold for spinal cord injury in rats [J]. Asian Spine J,2016,10(4):611-618. doi: 10.4184/asj.2016.10.4.611
[76] KHOSRAVIZADEH Z, RAZAVI S, BAHRAMIAN H, et al. The beneficial effect of encapsulated human adipose-derived stem cells in alginate hydrogel on neural differentiation [J]. J Biomed Mater Res B Appl Biomater,2014,102(4):749-755. doi: 10.1002/jbm.b.33055
[77] SUN J, TAN H. Alginate-based biomaterials for regenerative medicine applications [J]. Materials,2013,6(4):1285-1309. doi: 10.3390/ma6041285
[78] SITOCI-FICICI K H, MATYASH M, UCKERMANN O, et al. Non-functionalized soft alginate hydrogel promotes locomotor recovery after spinal cord injury in a rat hemimyelonectomy model [J]. Acta Neurochir,2018,160(3):449-457. doi: 10.1007/s00701-017-3389-4
[79] GUNTHER M I, WEIDNER N, MULLER R, et al. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord [J]. Acta Biomaterialia,2015,27:140-150. doi: 10.1016/j.actbio.2015.09.001
[80] LIU S, SANDNER B, SCHACKEL T, et al. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury [J]. Acta Biomaterialia,2017,60:167-180. doi: 10.1016/j.actbio.2017.07.024
[81] BECHARA S L, JUDSON A, POPAT K C. Template synthesized poly(epsilon-caprolactone) nanowire surfaces for neural tissue engineering [J]. Biomaterials,2010,31(13):3492-3501. doi: 10.1016/j.biomaterials.2010.01.084
[82] DONOGHUE P S, LAMOND R, BOOMKAMP S D, et al. The development of a epsilon-polycaprolactone scaffold for central nervous system repair [J]. Tissue Eng Part A,2013,19(3-4):497-507. doi: 10.1089/ten.tea.2012.0382
[83] PATEL B B, SHARIFI F, STROUD D P, et al. 3D Microfibrous scaffolds selectively promotes proliferation and glial differentiation of adult neural stem cells: A platform to tune cellular behavior in neural tissue engineering [J]. Macromolecular Bioscience,2019,19(2):e1800236. doi: 10.1002/mabi.201800236
[84] WONG D Y, LEVEQUE J C, BRUMBLAY H, et al. Macro-architectures in spinal cord scaffold implants influence regeneration [J]. J Neurotrauma,2008,25(8):1027-1037. doi: 10.1089/neu.2007.0473
[85] SILVA N A, SOUSA R A, FRAGA J S, et al. Benefits of spine stabilization with biodegradable scaffolds in spinal cord injured rats [J]. Tissue Eng Part C Methods,2013,19(2):101-108. doi: 10.1089/ten.tec.2012.0264
[86] FLYNN L, DALTON P D, SHOICHET M S. Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering [J]. Biomaterials,2003,24(23):4265-4272. doi: 10.1016/S0142-9612(03)00334-X
[87] HWANG D H, KIM H M, KANG Y M, et al. Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair [J]. Cell Transplantation,2011,20(9):1361-1379. doi: 10.3727/096368910X557155
[88] LI X, YANG C, LI L, et al. A therapeutic strategy for spinal cord defect: Human dental follicle cells combined with aligned PCL/PLGA electrospun material [J]. Biomed Research International,2015,2015:197183.
[89] GOMEZ J C, EDGAR J M, AGBAY A M, et al. Incorporation of retinoic acid releasing microspheres into pluripotent stem cell aggregates for inducing neuronal differentiation [J]. Cellular and Molecular Bioengineering,2015,8(3):307-319. doi: 10.1007/s12195-015-0401-z
[90] GELAIN F, PANSERI S, ANTONINI S, et al. Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords [J]. ACS Nano,2011,5(1):227-236. doi: 10.1021/nn102461w
[91] LAN H N, GAO M, LIN J, et al. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment [J]. Scientific Reports,2017,7:42212.
[92] FITZGERALD R, BASS L M, GOLDBERG D J, et al. Physiochemical characteristics of poly-L-lactic acid (PLLA) [J]. Aesthetic Surgery Journal,2018,38(suppl_1):S13-S17. doi: 10.1093/asj/sjy012
[93] PANG X, ZHUANG X, TANG Z, et al. Polylactic acid (PLA): Research, development and industrialization [J]. Biotechnology Journal,2010,5(11SI):1125-1136.
[94] BELLINI D, CENCETTI C, SACCHETTA A C, et al. PLA-grafting of collagen chains leading to a biomaterial with mechanical performances useful in tendon regeneration [J]. J Mech Behav Biomed Mater,2016,64:151-160. doi: 10.1016/j.jmbbm.2016.07.006
[95] CHEN W, CHEN S, MORSI Y, et al. Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering [J]. ACS Appl Mater Interfaces,2016,8(37):24415-24425. doi: 10.1021/acsami.6b06825
[96] DENG Q Y, LI S R, CAI W Q, et al. Poly-lactic acid and agarose gelatin play an active role in the recovery of spinal cord injury [J]. Neuroscience Bulletin,2006,22(2):73-78.
[97] CAI J, ZIEMBA K S, SMITH G M, et al. Evaluation of cellular organization and axonal regeneration through linear PLA foam implants in acute and chronic spinal cord injury [J]. Journal of Biomedical Materials Research Part A,2007,83(2):512-520.
[98] HURTADO A, CREGG J M, WANG H B, et al. Robust CNS regeneration after complete spinal cord transection using aligned poly-L-lactic acid microfibers [J]. Biomaterials,2011,32(26):6068-6079. doi: 10.1016/j.biomaterials.2011.05.006
[99] BARROCA N, MAROTE A, VIEIRA S I, et al. Electrically polarized PLLA nanofibers as neural tissue engineering scaffolds with improved neuritogenesis [J]. Colloids Surf B Biointerfaces,2018,167:93-103. doi: 10.1016/j.colsurfb.2018.03.050
[100] IZADPANAHI M, SEYEDJAFARI E, AREFIAN E, et al. Nanotopographical cues of electrospun PLLA efficiently modulate non-coding RNA network to osteogenic differentiation of mesenchymal stem cells during BMP signaling pathway [J]. Mater Sci Eng C Mater Biol Appl,2018,93:686-703. doi: 10.1016/j.msec.2018.08.023
[101] YANG F, MURUGAN R, WANG S, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering [J]. Biomaterials,2005,26(15):2603-2610. doi: 10.1016/j.biomaterials.2004.06.051
[102] ZENG C G, XIONG Y, XIE G, et al. Fabrication and evaluation of PLLA multichannel conduits with nanofibrous microstructure for the differentiation of NSCs in vitro [J]. Tissue Eng Part A,2014,20(5-6):1038-1048. doi: 10.1089/ten.tea.2013.0277
[103] SUN X, BAI Y, ZHAI H, et al. Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury [J]. Acta Biomaterialia,2019,86:194-206. doi: 10.1016/j.actbio.2018.12.032
[104] PATIST C M, MULDER M B, GAUTIER S E, et al. Freeze-dried poly(D, L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord [J]. Biomaterials,2004,25(9):1569-1582. doi: 10.1016/S0142-9612(03)00503-9
[105] BINAN L, TENDEY C, de CRESCENZO G, et al. Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold [J]. Biomaterials,2014,35(2):664-674. doi: 10.1016/j.biomaterials.2013.09.097
[106] HURTADO A, MOON L D, MAQUET V, et al. Poly (D, L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord [J]. Biomaterials,2006,27(3):430-442. doi: 10.1016/j.biomaterials.2005.07.014
[107] SUN X, ZHANG C, XU J, et al. Neurotrophin-3-loaded multichannel nanofibrous scaffolds promoted anti-inflammation, neuronal differentiation, and functional recovery after spinal cord injury [J]. ACS Biomaterials Science & Engineering,2020,6(2):1228-1238.
[108] LEE S Y, JUNG E, PARK J H, et al. Transient aggregation of chitosan-modified poly(D, L-lactic-co-glycolic) acid nanoparticles in the blood stream and improved lung targeting efficiency [J]. J Colloid Interface Sci,2016,480:102-108. doi: 10.1016/j.jcis.2016.07.006
[109] WANG J, LI D, LI T, et al. Gelatin tight-coated poly(lactide-co-glycolide) scaffold incorporating rhBMP-2 for bone tissue engineering [J]. Materials,2015,8(3):1009-1026. doi: 10.3390/ma8031009
[110] WILEMS T S, SAKIYAMA-ELBERT S E. Sustained dual drug delivery of anti-inhibitory molecules for treatment of spinal cord injury [J]. Journal of Controlled Release,2015,213:103-111. doi: 10.1016/j.jconrel.2015.06.031
[111] HAN F Y, THURECHT K J, WHITTAKER A K, et al. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading [J]. Frontiers in Pharmacology,2016,7:185.
[112] XIONG Y, ZHU J X, FANG Z Y, et al. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers [J]. Int J Nanomedicine,2012,7:1977-1989.
[113] ZHANG Y Q, HE L M, XING B, et al. Neurotrophin-3 gene-modified Schwann cells promote TrkC gene-modified mesenchymal stem cells to differentiate into neuron-like cells in poly(lactic-acid-co-glycolic acid) multiple-channel conduit [J]. Cells Tissues Organs,2012,195(4):313-322. doi: 10.1159/000327724
[114] HE L, ZHANG Y, ZENG C, et al. Manufacture of PLGA multiple-channel conduits with precise hierarchical pore architectures and in vitro/vivo evaluation for spinal cord injury [J]. Tissue Eng Part C Methods,2009,15(2):243-255. doi: 10.1089/ten.tec.2008.0255
[115] TENG Y D, LAVIK E B, QU X, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells [J]. Proc Natl Acad Sci USA,2002,99(5):3024-3029. doi: 10.1073/pnas.052678899
[116] SLOTKIN J R, PRITCHARD C D, LUQUE B, et al. Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury [J]. Biomaterials,2017,123:63-76. doi: 10.1016/j.biomaterials.2017.01.024
[117] THOMAS A M, KUBILIUS M B, HOLLAND S J, et al. Channel density and porosity of degradable bridging scaffolds on axon growth after spinal injury [J]. Biomaterials,2013,34(9):2213-2220. doi: 10.1016/j.biomaterials.2012.12.002
[118] TUINSTRA H M, AVILES M O, SHIN S, et al. Multifunctional, multichannel bridges that deliver neurotrophin encoding lentivirus for regeneration following spinal cord injury [J]. Biomaterials,2012,33(5):1618-1626. doi: 10.1016/j.biomaterials.2011.11.002
[119] TUINSTRA H M, MARGUL D J, GOODMAN A G, et al. Long-term characterization of axon regeneration and matrix changes using multiple channel bridges for spinal cord regeneration [J]. Tissue Eng Part A,2014,20(5-6):1027-1037. doi: 10.1089/ten.tea.2013.0111
[120] YANG Y, de LAPORTE L, ZELIVYANSKAYA M L, et al. Multiple channel bridges for spinal cord injury: Cellular characterization of host response [J]. Tissue Eng Part A,2009,15(11):3283-3295. doi: 10.1089/ten.tea.2009.0081
[121] MOORE M J, FRIEDMAN J A, LEWELLYN E B, et al. Multiple-channel scaffolds to promote spinal cord axon regeneration [J]. Biomaterials,2006,27(3):419-429. doi: 10.1016/j.biomaterials.2005.07.045
[122] NEHRT A, HAMANN K, OUYANG H, et al. Polyethylene glycol enhances axolemmal resealing following transection in cultured cells and in exvivo spinal cord [J]. J Neurotrauma,2010,27(1):151-161. doi: 10.1089/neu.2009.0993
[123] LU X, PERERA T H, ARIA A B, et al. Polyethylene glycol in spinal cord injury repair: A critical review [J]. J Exp Pharmacol,2018,10:37-49. doi: 10.2147/JEP.S148944
[124] FAN C, WANG D. A biodegradable PEG-based micro-cavitary hydrogel as scaffold for cartilage tissue engineering [J]. European Polymer Journal,2015,72:651-660. doi: 10.1016/j.eurpolymj.2015.02.038
[125] KIM C. PEG-assisted reconstruction of the cervical spinal cord in rats: Effects on motor conduction at 1h [J]. Spinal Cord,2016,54(10):910-912. doi: 10.1038/sc.2016.72
[126] REN S, LIU Z, WU Q, et al. Polyethylene glycol-induced motor recovery after total spinal transection in rats [J]. CNS Neuroscience & Therapeutics,2017,23(8):680-685.
[127] LAMPE K J, KERN D S, MAHONEY M J, et al. The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: Protein distribution and the glial response [J]. Journal of Biomedical Materials Research Part A,2011,96A(3):595-607. doi: 10.1002/jbm.a.33011
[128] GROUS L C, VERNENGO J, JIN Y, et al. Implications of poly (N-isopropylacrylamide)-g-poly(ethylene glycol) with codissolved brain-derived neurotrophic factor injectable scaffold on motor function recovery rate following cervical dorsolateral funiculotomy in the rat [J]. J Neurosurg Spine,2013,18(6):641-652. doi: 10.3171/2013.3.SPINE12874
[129] LI X, LIU X, CUI L, et al. Engineering an in situ crosslinkable hydrogel for enhanced remyelination [J]. Faseb Journal,2013,27(3):1127-1136. doi: 10.1096/fj.12-211151
[130] PIANTINO J, BURDICK J A, GOLDBERG D, et al. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury [J]. Experimental Neurology,2006,201(2):359-367. doi: 10.1016/j.expneurol.2006.04.020
[131] CIGOGNINI D, SATTA A, COLLEONI B, et al. Evaluation of early and late effects into the acute spinal cord injury of an injectable functionalized self-assembling scaffold [J]. PLoS One,2011,6(5):e19782. doi: 10.1371/journal.pone.0019782
[132] GOKTAS M, CINAR G, ORUJALIPOOR I, et al. Self-assembled peptide amphiphile nanofibers and peg composite hydrogels as tunable ECM mimetic microenvironment [J]. Biomacromolecules,2015,16(4):1247-1258. doi: 10.1021/acs.biomac.5b00041
[133] LU J, WANG X. Biomimetic self-assembling peptide hydrogels for tissue engineering applications [J]. Advances in Experimental Medicine and Biology,2018,1064:297-312.
[134] RASPA A, CARMINATI L, PUGLIESE R, et al. Self-assembling peptide hydrogels for the stabilization and sustained release of active Chondroitinase ABC in vitro and in spinal cord injuries [J]. Journal of Controlled Release,2020,330:1208-1219.
[135] MATSON J B, STUPP S I. Self-assembling peptide scaffolds for regenerative medicine [J]. Chem Commun,2012,48(1):26-33. doi: 10.1039/C1CC15551B
[136] ZHANG S, GREENFIELD M A, MATA A, et al. A self-assembly pathway to aligned monodomain gels [J]. Nature Materials,2010,9(7):594-601. doi: 10.1038/nmat2778
[137] LIU Y, YE H, SATKUNENDRARAJAH K, et al. A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury [J]. Acta Biomaterialia,2013,9(9):8075-8088. doi: 10.1016/j.actbio.2013.06.001
[138] IWASAKI M, WILCOX J T, NISHIMURA Y, et al. Synergistic effects of self-assembling peptide and neural stem/progenitor cells to promote tissue repair and forelimb functional recovery in cervical spinal cord injury [J]. Biomaterials,2014,35(9):2617-2629. doi: 10.1016/j.biomaterials.2013.12.019
[139] LIU H, XU X, TU Y, et al. Engineering microenvironment for endogenous neural regeneration after spinal cord injury by reassembling extracellular matrix [J]. ACS Appl Mater Interfaces,2020,12(15):17207-17219. doi: 10.1021/acsami.9b19638
[140] KIM B S, CHO C S. Injectable hydrogels for regenerative medicine [J]. Tissue Engineering and Regenerative Medicine,2018,15(5):511-512. doi: 10.1007/s13770-018-0161-7
[141] HUNT J A, CHEN R, van VEEN T, et al. Hydrogels for tissue engineering and regenerative medicine [J]. Journal of Materials Chemistry B,2014,2(33):5319-5338. doi: 10.1039/C4TB00775A
[142] AKBARI A, JABBARI N, SHARIFI R, et al. Free and hydrogel encapsulated exosome-based therapies in regenerative medicine [J]. Life Sciences,2020,249:117447. doi: 10.1016/j.lfs.2020.117447
[143] MANTHA S, PILLAI S, KHAYAMBASHI P, et al. Smart hydrogels in tissue engineering and regenerative medicine [J]. Materials,2019,12(20):3323.
[144] SLAUGHTER B V, KHURSHID S S, FISHER O Z, et al. Hydrogels in regenerative medicine [J]. Advanced Materials,2009,21(32-33):3307-3329. doi: 10.1002/adma.200802106
[145] WILLERTH S M, SAKIYAMA-ELBERT S E. Approaches to neural tissue engineering using scaffolds for drug delivery [J]. Adv Drug Deliv Rev,2007,59(4-5):325-338. doi: 10.1016/j.addr.2007.03.014
[146] QU W, CHEN B, SHU W, et al. Polymer-based scaffold strategies for spinal cord repair and regeneration [J]. Front Bioeng Biotechnol,2020,8:590549. doi: 10.3389/fbioe.2020.590549
[147] LI G, CHE M T, ZHANG K, et al. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury [J]. Biomaterials,2016,83:233-248. doi: 10.1016/j.biomaterials.2015.11.059
[148] KOFFLER J, ZHU W, QU X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair [J]. Nature Medicine,2019,25(2):263-269. doi: 10.1038/s41591-018-0296-z
[149] JOUNG D, TRUONG V, NEITZKE C C, et al. 3D Printed stem-cell derived neural progenitors generate spinal cord scaffolds [J]. Advanced Functional Materials,2018,28(39):1801850. doi: 10.1002/adfm.201801850
[150] MUHEREMU A, AO Q. Past, present, and future of nerve conduits in the treatment of peripheral nerve injury [J]. Biomed Research International,2015,2015:237507.
[151] DALY W, YAO L, ZEUGOLIS D, et al. A biomaterials approach to peripheral nerve regeneration: Bridging the peripheral nerve gap and enhancing functional recovery [J]. Journal of the Royal Society Interface,2012,9(67):202-221. doi: 10.1098/rsif.2011.0438
[152] RAMBURRUN P, KUMAR P, CHOONARA Y E, et al. A review of bioactive release from nerve conduits as a neurotherapeutic strategy for neuronal growth in peripheral nerve injury [J]. Biomed Research International,2014,2014:132350.
[153] de LAPORTE L, YAN A L, SHEA L D. Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury [J]. Biomaterials,2009,30(12):2361-2368. doi: 10.1016/j.biomaterials.2008.12.051
[154] DUMONT C M, MARGUL D J, SHEA L D. Tissue engineering approaches to modulate the inflammatory milieu following spinal cord injury [J]. Cells Tissues Organs,2016,202(1-2):52-66. doi: 10.1159/000446646
[155] de RUITER G C, MALESSY M J, YASZEMSKI M J, et al. Designing ideal conduits for peripheral nerve repair [J]. Neurosurgical Focus,2009,26(2):E5. doi: 10.3171/FOC.2009.26.2.E5
[156] FRANTZ C, STEWART K M, WEAVER V M. The extracellular matrix at a glance [J]. Journal of Cell Science,2010,123(Pt 24):4195-4200.
[157] GUO J S, QIAN C H, LING E A, et al. Nanofiber scaffolds for treatment of spinal cord injury [J]. Current Medicinal Chemistry,2014,21(37):4282-4289. doi: 10.2174/0929867321666140815124648
[158] HE L, TIAN L, SUN Y, et al. Nano-engineered environment for nerve regeneration: Scaffolds, functional molecules and stem cells [J]. Curr Stem Cell Res Ther,2016,11(8):605-617. doi: 10.2174/1574888X10666151001114735
[159] SIMITZI C, RANELLA A, STRATAKIS E. Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography [J]. Acta Biomaterialia,2017,51:21-52. doi: 10.1016/j.actbio.2017.01.023
[160] LI X, ZHANG C, HAGGERTY A E, et al. The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord [J]. Biomaterials,2020,245:119978.
[161] HARVEY A R, LOVETT S J, MAJDA B T, et al. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? [J]. Brain Research,2015,1619:36-71. doi: 10.1016/j.brainres.2014.10.049
[162] MOHTARAM N K, MONTGOMERY A, WILLERTH S M. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors [J]. Biomedical Materials,2013,8(2):22001. doi: 10.1088/1748-6041/8/2/022001
[163] MENEI P, DANIEL V, MONTERO-MENEI C, et al. Biodegradation and brain tissue reaction to poly(D, L-lactide-co-glycolide) microspheres [J]. Biomaterials,1993,14(6):470-478. doi: 10.1016/0142-9612(93)90151-Q
[164] GARBAYO E, MONTERO-MENEI C N, ANSORENA E, et al. Effective GDNF brain delivery using microspheres: A promising strategy for Parkinson's disease [J]. Journal of Controlled Release,2009,135(2):119-126.
[165] PEAN J M, MENEI P, MOREL O, et al. Intraseptal implantation of NGF-releasing microspheres promote the survival of axotomized cholinergic neurons [J]. Biomaterials,2000,21(20):2097-2101. doi: 10.1016/S0142-9612(00)00141-1
[166] ANDRIEU-SOLER C, AUBERT-POUESSEL A, DOAT M, et al. Intravitreous injection of PLGA microspheres encapsulating GDNF promotes the survival of photoreceptors in the rd1/rd1 mouse [J]. Molecular Vision,2005,11:1002-1011.
[167] WANG Y C, WU Y T, HUANG H Y, et al. Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury [J]. Biomaterials,2008,29(34):4546-4553. doi: 10.1016/j.biomaterials.2008.07.050
[168] NANCE E A, WOODWORTH G F, SAILOR K A, et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue [J]. Science Translational Medicine,2012,4(149):119r-149r.
[169] GAO H, PANG Z, JIANG X. Targeted delivery of nano-therapeutics for major disorders of the central nervous system [J]. Pharm Res,2013,30(10):2485-2498. doi: 10.1007/s11095-013-1122-4
[170] AZIZI M, FARAHMANDGHAVI F, JOGHATAEI M T, et al. ChABC-loaded PLGA nanoparticles: A comprehensive study on biocompatibility, functional recovery, and axonal regeneration in animal model of spinal cord injury [J]. Int J Pharm,2020,577:119037. doi: 10.1016/j.ijpharm.2020.119037
[171] BAOLIN G, MA P X. Synthetic biodegradable functional polymers for tissue engineering: A brief review [J]. Science China: Chemistry,2014,57(4):490-500. doi: 10.1007/s11426-014-5086-y
[172] LIU T, XU J, CHAN B P, et al. Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair [J]. Journal of Biomedical Materials Research Part A,2012,100(1):236-242.
[173] TAYLOR S J, MCDONALD J R, SAKIYAMA-ELBERT S E. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury [J]. Journal of Controlled Release,2004,98(2):281-294. doi: 10.1016/j.jconrel.2004.05.003
[174] LORD-FONTAINE S, YANG F, DIEP Q, et al. Local inhibition of Rho signaling by cell-permeable recombinant protein BA-210 prevents secondary damage and promotes functional recovery following acute spinal cord injury [J]. J Neurotrauma,2008,25(11):1309-1322. doi: 10.1089/neu.2008.0613
[175] WANG Y, COOKE M J, MORSHEAD C M, et al. Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury [J]. Biomaterials,2012,33(9):2681-2692. doi: 10.1016/j.biomaterials.2011.12.031
[176] CHEW S Y, WEN J, YIM E K, et al. Sustained release of proteins from electrospun biodegradable fibers [J]. Biomacromolecules,2005,6(4):2017-2024. doi: 10.1021/bm0501149
[177] JIANG X, CAO H Q, SHI L Y, et al. Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment [J]. Acta Biomaterialia,2012,8(3):1290-1302. doi: 10.1016/j.actbio.2011.11.019
[178] JIANG H, HU Y, LI Y, et al. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents [J]. Journal of Controlled Release,2005,108(2-3):237-243. doi: 10.1016/j.jconrel.2005.08.006
[179] LIAO I C, CHEW S Y, LEONG K W. Aligned core-shell nanofibers delivering bioactive proteins [J]. Nanomedicine,2006,1(4):465-471. doi: 10.2217/17435889.1.4.465
[180] BURDICK J A, WARD M, LIANG E, et al. Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels [J]. Biomaterials,2006,27(3):452-459. doi: 10.1016/j.biomaterials.2005.06.034
[181] LIU J, ZHANG J, ZHANG X, et al. Transforming growth factor-β 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets [J]. Biomaterials,2016,80:11-19. doi: 10.1016/j.biomaterials.2015.11.065
[182] CAICCO M J, COOKE M J, WANG Y, et al. A hydrogel composite system for sustained π-cortical delivery of Cyclosporin A to the brain for treatment of stroke [J]. Journal of Controlled Release,2013,166(3):197-202. doi: 10.1016/j.jconrel.2013.01.002