[1] TSAPIKOUNI T S, MISSIRLIS Y F. pH and Ionic strength effect on single fibrinogen molecule adsorption on mica studied with AFM [J]. Colloid Surface B,2007,57(1):89-96. doi: 10.1016/j.colsurfb.2007.01.011
[2] WASILEWSKA M, ADAMCZYK Z, JACHIMSKA B. Structure of fibrinogen in electrolyte solutions derived from dynamic light scattering (DLS) and viscosity measurements [J]. Langmuir,2009,25(6):3698-3704. doi: 10.1021/la803662a
[3] MONKAWA A, IKOMA T, YUNOKI S, et al. Fabrication of hydroxyapatite ultra-thin layer on gold surface and its application for quartz crystal inicrobalance technique [J]. Biomaterials,2006,27(33):5748-5754. doi: 10.1016/j.biomaterials.2006.07.029
[4] SIGAL G B, MRKSICH M, WHITESIDES G M. Effect of surface wettability on the adsorption of proteins and detergents [J]. J Am Chem Soc,1998,120(14):3464-3473. doi: 10.1021/ja970819l
[5] PSARRA E, KONIG U, UEDA Y, et al. Nanostructured biointerfaces: Nanoarchitectonics of thermoresponsive polymer brushes impact protein adsorption and cell adhesion [J]. ACS Appl Mater Interfaces,2015,7(23):12516-12529. doi: 10.1021/am508161q
[6] ADAMCZYK Z, BARBASZ J, CIESLA M. Mechanisms of fibrinogen adsorption at solid substrates [J]. Langmuir,2011,27(11):6868-6878. doi: 10.1021/la200798d
[7] WASILEWSKA M, ADAMCZYK Z, SADOWSKA M, et al. Mechanisms of fibrinogen adsorption on silica sensors at various pHs: Experiments and theoretical modeling [J]. Langmuir,2019,35(35):11275-11284. doi: 10.1021/acs.langmuir.9b01341
[8] WASILEWSKA M, ADAMCZYK Z. Fibrinogen adsorption on mica studied by AFM and in situ streaming potential measurements [J]. Langmuir,2011,27(2):686-696. doi: 10.1021/la102931a
[9] YIGIT C, KANDUC M, BALLAUFF M, et al. Interaction of charged patchy protein models with like-charged polyelectrolyte brushes [J]. Langmuir,2017,33(1):417-427. doi: 10.1021/acs.langmuir.6b03797
[10] FLICK M J, DU X L, WITTE D P, et al. Leukocyte engagement of fibrin(ogen) via the integrin receptor αmβ2/Mac-1 is critical for host inflammatory response in vivo [J]. J Clin Invest,2004,113(11):1596-1606. doi: 10.1172/JCI20741
[11] DELCROIX M F, HUET G L, CONARD T, et al. Design of mixed PEO/PAA brushes with switchable properties toward protein adsorption [J]. Biomacromolecules,2013,14(1):215-225. doi: 10.1021/bm301637h
[12] DELCROIX M F, DEMOUSTIER-CHAMPAGNE S, DUPONT-GILLAIN C C. Quartz crystal microbalance study of ionic strength and pH-dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes [J]. Langmuir,2014,30(1):268-277. doi: 10.1021/la403891k
[13] BRATEK-SKICKI A, ELOY P, MORGA M, et al. Reversible protein adsorption on mixed PEO/PAA polymer brushes: Role of ionic strength and PEO content [J]. Langmuir,2018,34(9):3037-3048. doi: 10.1021/acs.langmuir.7b04179
[14] 高翔, 罗静, 钱佳怡, 等. 聚乙二醇型超支化聚酯胺的制备及表征 [J]. 功能高分子学报,2020,33(2):187-193.GAO X, LUO J, QIAN J Y, et al. Preparation and characterization of hyperbranched poly(amino-ester) with poly(ethylene glycol) [J]. Journal of Functional Polymers,2020,33(2):187-193.
[15] KIM S, GIM T, KANG S M. Versatile, tannic acid-mediated surface PEGylation for marine antifouling applications [J]. ACS Appl Mater Interfaces,2015,7(12):6412-6416. doi: 10.1021/acsami.5b01304
[16] KIM S, GIM T, JEONG Y, et al. Facile construction of robust multilayered PEG films on polydopamine-coated solid substrates for marine antifouling applications [J]. ACS Appl Mater Interfaces,2018,10(9):7626-7631. doi: 10.1021/acsami.7b07199
[17] GOH S C, LUAN Y, WANG X, et al. Polydopamine-polyethylene glycol-albumin antifouling coatings on multiple substrates [J]. J Mater Chem B,2018,6(6):940-949. doi: 10.1039/C7TB02636F
[18] HU Y, JIN J, HAN Y Y, et al. Study of fibrinogen adsorption on poly(ethylene glycol)-modified surfaces using a quartz crystal microbalance with dissipation and a dual polarization interferometry [J]. Rsc Adv,2014,4(15):7716-7724. doi: 10.1039/c3ra46934d
[19] ZHANG Z, FINLAY J A, WANG L F, et al. Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings [J]. Langmuir,2009,25(23):13516-13521. doi: 10.1021/la901957k
[20] HEMENWAY J N, CARVALHO T C, RAO V M, et al. Formation of reactive impurities in aqueous and neat polyethylene glycol 400 and effects of antioxidants and oxidation inducers [J]. J Pharm Sci,2012,101(9):3305-3318. doi: 10.1002/jps.23198
[21] VERBRAEKEN B, MONNERY B D, LAVA K, et al. The chemistry of poly(2-oxazoline)s [J]. Eur Polym J,2017,88:451-469. doi: 10.1016/j.eurpolymj.2016.11.016
[22] TANG P, di CIO S, WANG W, et al. Surface-initiated poly(oligo(2-alkyl-2-oxazoline)methacrylate) brushes [J]. Langmuir,2018,34(34):10019-10027. doi: 10.1021/acs.langmuir.8b01682
[23] MORGESE G, GOMBERT Y, RAMAKRISHNA S N, et al. Mixing poly(ethylene glycol) and poly(2-alkyl-2-oxazoline)s enhances hydration and viscoelasticity of polymer brushes and determines their nanotribological and antifouling properties [J]. ACS Appl Mater Interfaces,2018,10(48):41839-41848. doi: 10.1021/acsami.8b17193
[24] de FAZIO A F, MORGESE G, MOGNATO M, et al. Robust and biocompatible functionalization of ZnS nanoparticles by catechol-bearing poly(2-methyl-2-oxazoline)s [J]. Langmuir,2018,34(38):11534-11543. doi: 10.1021/acs.langmuir.8b02287
[25] LORSON T, LUBTOW M M, WEGENER E, et al. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update [J]. Biomaterials,2018,178:204-280. doi: 10.1016/j.biomaterials.2018.05.022
[26] PAN C, LIU X, GONG K, et al. Dopamine assisted PMOXA/PAA brushes for their switchable protein adsorption/desorption [J]. J Mater Chem B,2018,6(4):556-567. doi: 10.1039/C7TB02209C
[27] GONG K, PAN C, HE K, et al. Influence of poly(acrylic acid) grafting density on switchable protein adsorption/desorption of poly(2-methyl-2-oxazoline)/poly(acrylic acid) mixed brushes [J]. J Appl Polym Sci,2019,136(42):48135.
[28] TAUHARDT L, FRANT M, PRETZEL D, et al. Amine end-functionalized poly(2-ethyl-2-oxazoline) as promising coating material for antifouling applications [J]. J Mater Chem B,2014,2(30):4883-4893. doi: 10.1039/C4TB00193A
[29] WU J H, DIAMOND S L. A Fluorescence quench and dequench assay of fibrinogen polymerization, fibrinogenolysis, or fibrinolysis [J]. Anal Biochem,1995,224(1):83-91. doi: 10.1006/abio.1995.1011
[30] MUNAWEERA I, ALIEV A, BALKUS K J. Electrospun cellulose acetate-garnet nanocomposite magnetic fibers for bioseparations [J]. Acs Appl Mater Inter,2014,6(1):244-251. doi: 10.1021/am404066g
[31] BARRANCO F T, DAWSON H E. Influence of aqueous pH on the interfacial properties of coal tar [J]. Environ Sci Technol,1999,33(10):1598-1603. doi: 10.1021/es980196r
[32] SVOBODA J, SEDLACEK O, RIEDEL T, et al. Poly(2-oxazoline)s one-pot polymerization and surface coating: From synthesis to antifouling properties out-performing poly(ethylene oxide) [J]. Biomacromolecules,2019,20(9):3453-3463. doi: 10.1021/acs.biomac.9b00751
[33] MORGESE G, VERBRAEKEN B, RAMAKRISHNA S N, et al. Chemical design of non-ionic polymer brushes as biointerfaces: Poly(2-oxazine)s outperform both poly(2-oxazoline)s and PEG [J]. Angew Chem Int Edit,2018,57(36):11667-11672. doi: 10.1002/anie.201805620