[1] ZHUANG X, MAI Y, WU D, et al. Two-dimensional soft nanomaterials: A fascinating world of materials [J]. Advanced Materials,2015,27(3):403-427. doi: 10.1002/adma.201401857
[2] ZHU J, YANG C, LU C, et al. Two-dimensional porous polymers: From sandwich-like structure to layered skeleton [J]. Accounts of Chemical Research,2018,51(12):3191-3202. doi: 10.1021/acs.accounts.8b00444
[3] ZHENG C, ZHU J, YANG C, et al. The art of two-dimensional soft nanomaterials [J]. Science China Chemistry,2019,62(9):1145-1193. doi: 10.1007/s11426-019-9477-y
[4] 姜恺悦, 杨重庆, 庄小东. 导电二维配位聚合物框架材料在能源及转化领域的应用 [J]. 功能高分子学报,2019,32(2):155-177.
[5] 封博谞, 庄小东. 碳基介熵材料: 理论与实验 [J]. 化学学报,2020,78(9):833-847.
[6] 康佳玲, 王红星, 邱丰, 等. sp2碳连接的二维聚合物 [J]. 功能高分子学报,2021,34(1):5-25.
[7] ZHANG W, CUI J, TAO C, et al. A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach [J]. Angewandte Chemie International Edition,2009,48(32):5864-5868. doi: 10.1002/anie.200902365
[8] LIU S, WANG F, DONG R, et al. Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size [J]. Advanced Materials,2016,28(38):8365-8370. doi: 10.1002/adma.201603036
[9] YUAN P, LI Y, BAN Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes [J]. Science,2014,346(6215):1356. doi: 10.1126/science.1254227
[10] JI L, QIN Y, GUI D, et al. Quantifying the exfoliation ease level of 2D materials via mechanical anisotropy [J]. Chemistry of Materials,2018,30(24):8732-8738. doi: 10.1021/acs.chemmater.8b01082
[11] DING Y, CHEN Y, ZHANG X, et al. Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent [J]. Journal of Materials Chemistry A,2017,139(27):9136-9139.
[12] DONG R, ZHANG T, FENG, X. Interface-assisted synthesis of 2D materials: Trend and challenges [J]. Chemical Reviews,2018,118(13):6189-6235. doi: 10.1021/acs.chemrev.8b00056
[13] YU J, LI J, ZHANG W, et al. Synthesis of high-quality two-dimensional materials via chemical vapor deposition [J]. Chemical Science,2015,6:6705-6716. doi: 10.1039/C5SC01941A
[14] CHMIOLA J, LARGEOT C, TABERNA P L, et al. Monolithic carbide-derived carbon films for micro-supercapacitors [J]. Science,2010,328(5977):480-483. doi: 10.1126/science.1184126
[15] WU Z, PARVEZ K, FENG X, et al. Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers [J]. Journal of Materials Chemistry A,2014,2(22):8288-8293. doi: 10.1039/c4ta00958d
[16] GAO W, SINGH N, SONG L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films [J]. Nature Nanotechnology,2011,6:496-500. doi: 10.1038/nnano.2011.110
[17] LIU Y, XU J, GAO X, et al. Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors [J]. Energy & Environmental Science,2017,10(12):2534-2543.
[18] PECH D, BRUNET M, DUROU H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon [J]. Nature Nanotechnology,2010,5:651-654. doi: 10.1038/nnano.2010.162
[19] LIU Z, WU Z, YANG S, et al. Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene [J]. Advanced Materials,2016,28(11):2217-2222. doi: 10.1002/adma.201505304
[20] MIRVAKILI S M, HUNTER I W. Vertically aligned niobium nanowire arrays for fast-charging micro-supercapacitors [J]. Advanced Materials,2017,29(27):1700671. doi: 10.1002/adma.201700671
[21] 谷志刚. 液相外延生长法层层组装金属-有机框架薄膜 [J]. 功能高分子学报,2019,32(5):533-540.
[22] DIAW A K D, GNINGUE-SALL D, YASSAR A, et al. New poly(p-substituted-N-phenylpyrrole)s: Electrosynthesis, electrochemical properties and characterization [J]. Synthetic Metals,2013,179:74-85. doi: 10.1016/j.synthmet.2013.07.016
[23] LIU D, ZHANG Y, LI G. Nanomorphology in A–D–A type small molecular acceptors-based bulk heterojunction polymer solar cells [J]. Journal of Natural Gas Chemistry,2019,35:104-123.
[24] BRUNAUER S, DEMING L S, DEMING W E, et al. On a theory of the van der Waals adsorption of gases [J]. Journal of the American Chemical Society,1940,62(7):1723-1732. doi: 10.1021/ja01864a025
[25] ZHAO W, ZHUANG X, WU D, et al. Boron-π-nitrogen-based conjugated porous polymers with multi-functions [J]. Journal of Materials Chemistry A,2013,1(44):13878-13884. doi: 10.1039/c3ta13334f
[26] ZHANG T, HOU Y, DZHAGAN V, et al. Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes [J]. Nature Communications,2018,9(1):1140. doi: 10.1038/s41467-018-03444-0
[27] LIN J, ZHANG C, YAN Z, et al. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance [J]. Nano Letters,2013,13:72-78. doi: 10.1021/nl3034976
[28] 陈彧. 基于配位聚合物框架的微超级电容器 [J]. 功能高分子学报,2020,33(2):105-107.
[29] WEI G, NEELAM S, LI S, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films [J]. Nat. Nanotech,2011,6:496-500.
[30] YANG C, SCHELLHAMMER K S, ORTMANN F, et al. Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance [J]. Angewandte Chemie International Edition,2017,56(14):3920-3924. doi: 10.1002/anie.201700679
[31] LIU S, GORDIICHUK P, WU Z, et al. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers [J]. Nature Communications,2015(6):8817.
[32] WU Z, PARVEZ K, FENG X, et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities [J]. Nature Communications,2013(4):2487.
[33] LI H, HOU Y, WANG F, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene [J]. Advanced Energy Materials,2017,7(4):1601847. doi: 10.1002/aenm.201601847
[34] WU J, PENG J, YU Z, et al. Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance [J]. Journal of the American Chemical Society,2018,140(1):493-498. doi: 10.1021/jacs.7b11915
[35] SHI X, PEI S, ZHOU F, et al. Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility [J]. Energy & Environmental Science,2019(12):1534-1541.
[36] YE J, TAN H, WU S, et al. Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output [J]. Advanced Materials,2018,30(27):1801384. doi: 10.1002/adma.201801384
[37] GAO L, YANG S, GAO W, et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films [J]. Small,2013,9(17):2905-2910. doi: 10.1002/smll.201203164
[38] JIANG Q, KURRA N, XIA C, et al. Hybrid microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-and-transfer strategy [J]. Advanced Energy Materials,2017,7(1):1601257. doi: 10.1002/aenm.201601257