[1] CORNELISSEN J J L M, ROWAN A E, NOLTE R J M, et al. Chiral architectures from macromolecular building blocks [J]. Chemical Reviews,2001,101(12):4039-4070. doi: 10.1021/cr990126i
[2] FUJIKI M. Optically active polysilylenes: State-of-the-art chiroptical polymers [J]. Macromolecular Rapid Communications,2001,22(8):539-563. doi: 10.1002/1521-3927(20010501)22:8<539::AID-MARC539>3.0.CO;2-K
[3] NAKANO T, OKAMOTO Y. Synthetic helical polymers: Conformation and function [J]. Chemical Reviews,2001,101(12):4013-4038. doi: 10.1021/cr0000978
[4] YASHIMA E, MAEDA K. Chirality-responsive helical polymers [J]. Macromolecules,2008,41(1):3-12. doi: 10.1021/ma071453s
[5] APPLEQUIST J. Optical-activity-biot bequest [J]. American Scientist,1987,75(1):59-68.
[6] YASHIMA E, MAEDA K, IIDA H, et al. Helical polymers: Synthesis, structures, and functions [J]. Chemical Reviews,2009,109(11):6102-6211. doi: 10.1021/cr900162q
[7] LIU G F, ZHANG D, FENG C L. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels [J]. Angewandte Chemie: International Edition,2014,53(30):7789-7793. doi: 10.1002/anie.201403249
[8] MATHEWS M, ZOLA R S, HURLEY S, et al. Light-driven reversible handedness inversion in self-organized helical superstructures [J]. Journal of the American Chemical Society,2010,132(51):18361-18366. doi: 10.1021/ja108437n
[9] LI Q, GREEN L, VENKATARAMAN N, et al. Reversible photoswitchable axially chiral dopants with high helical twisting power [J]. Journal of the American Chemical Society,2007,129(43):12908-12909. doi: 10.1021/ja0747573
[10] REKHARSKY M V, YAMAMURA H, INOUE C, et al. Chiral recognition in cucurbituril cavities [J]. Journal of the American Chemical Society,2006,128(46):14871-14880. doi: 10.1021/ja063323p
[11] 黄汉民, 郑卓, 陈惠麟. 手性有机分子催化剂在不对称催化中的应用 [J]. 分子催化,2003,17(5):389-399. doi: 10.3969/j.issn.1001-3555.2003.05.015
[12] NISHIMURA S, ABRAMS N, LEWIS B A, et al. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals [J]. Journal of the American Chemical Society,2003,125(20):6306-6310. doi: 10.1021/ja034650p
[13] YU H B, HU Q S, PU L. The first optically active BINOL-BINAP copolymer catalyst: Highly stereoselective tandem asymmetric reactions [J]. Journal of the American Chemical Society,2000,122(27):6500-6501.
[14] 赵银, 殷露, 刘晶晶, 等. 手性溶剂诱导非手性物质手性的研究进展 [J]. 功能高分子学报,2016,29(1):20-28.
[15] JIANG S Q, ZHAO Y, WANG L B, et al. Photocontrollable induction of supramolecular chirality in achiral side chain Azo-containing polymers through preferential chiral solvation [J]. Polymer Chemistry,2015,6(23):4230-4239. doi: 10.1039/C5PY00496A
[16] LIU J F, ZHANG J, ZHANG S S, et al. Chiroptical generation and amplification of hyperbranched π-conjugated polymers in aggregation states driven by limonene chirality [J]. Polymer Chemistry,2014,5(3):784-791. doi: 10.1039/C3PY01037F
[17] YIN L, ZHAO Y, JIANG S Q, et al. Preferential chiral solvation induced supramolecular chirality in optically inactive star Azo polymers: Photocontrollability, chiral amplification and topological effects [J]. Polymer Chemistry,2015,6(39):7045-7052. doi: 10.1039/C5PY01175B
[18] YIN L, ZHAO Y, LIU M, et al. Induction of supramolecular chirality by chiral solvation in achiral Azo polymers with different spacer lengths and push-pull electronic substituents: Where will chiral induction appear? [J]. Polymer Chemistry,2017,8(12):1906-1913. doi: 10.1039/C7PY00130D
[19] ZHAO Y, ABDUL RAHIM N A, XIA Y J, et al. Supramolecular chirality in achiral polyfluorene: Chiral gelation, memory of chirality, and chiral sensing property [J]. Macromolecules,2016,49(9):3214-3221. doi: 10.1021/acs.macromol.6b00376
[20] PETERCA M, IMAM M R, AHN C H, et al. Transfer, amplification, and inversion of helical chirality mediated by concerted interactions of C3-supramolecular dendrimers [J]. Journal of the American Chemical Society,2011,133(7):2311-2328. doi: 10.1021/ja110753s
[21] DUAN P F, LI Y G, LI L C, et al. Multiresponsive chiroptical switch of an azobenzene-containing lipid: Solvent, temperature, and photoregulated supramolecular chirality [J]. Journal of Physical Chemistry B,2011,115(13):3322-3329. doi: 10.1021/jp110636b
[22] KUROUSKI D, LU X F, POPOVA L, et al. Is supramolecular filament chirality the underlying cause of major morphology differences in amyloid fibrils? [J]. Journal of the American Chemical Society,2014,136(6):2302-2312. doi: 10.1021/ja407583r
[23] KUMAR J, NAKASHIMA T, KAWAI T. Inversion of supramolecular chirality in bichromophoric perylene bisimides: Influence of temperature and ultrasound [J]. Langmuir,2014,30(21):6030-6037. doi: 10.1021/la500497g
[24] GOPAL A, HIFSUDHEEN M, FURUMI S, et al. Thermally assisted photonic inversion of supramolecular handedness [J]. Angewandte Chemie: International Edition,2012,51(42):10505-10509. doi: 10.1002/anie.201205332
[25] MIAO W G, ZHANG L, WANG X F, et al. A dual-functional metallogel of amphiphilic copper(II) quinolinol: Redox responsiveness and enantioselectivity [J]. Chemistry: A European Journal,2013,19(9):3029-3036. doi: 10.1002/chem.201203401
[26] OGOSHI T, AKUTSU T, YAMAFUJI D, et al. Solvent- and achiral-guest-triggered chiral inversion in a planar chiral pseudo [J]. Angewandte Chemie: International Edition,2013,52(31):8111-8115. doi: 10.1002/anie.v52.31
[27] 张双双, 刘江飞, 张键, 等. 溶剂手性转移法制备超支化共轭聚合物手性荧光纳米粒子 [J]. 高分子学报,2013(4):426-435.
[28] MIAO T F, YIN L, CHENG X X, et al. Chirality construction from preferred π-π stacks of achiral azobenzene units in polymer: Chiral induction, transfer and memory [J]. Polymers,2018,10:612. doi: 10.3390/polym10060612
[29] WANG L B, YIN L, ZHANG W, et al. Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium [J]. Journal of the American Chemical Society,2017,139(37):13218-13226. doi: 10.1021/jacs.7b07626
[30] 殷露, 缪腾飞, 程笑笑, 等. 光诱导非手性聚合物的手性研究进展 [J]. 功能高分子学报,2018,31(5):387-401.
[31] D'URSO A, RANDAZZO R, LO TARO L, et al. Vortexes and nanoscale chirality [J]. Angewandte Chemie: International Edition,2010,49(1):108-112. doi: 10.1002/anie.200903543
[32] AKAGI K. Helical polyacetylene: Asymmetric polymerization in a chiral liquid-crystal field [J]. Chemical Reviews,2009,109(11):5354-5401. doi: 10.1021/cr900198k
[33] SCHWARTZ E, LE GAC S, CORNELISSEN J J L M, et al. Macromolecular multi-chromophoric scaffolding [J]. Chemical Society Reviews,2010,39(5):1576-1599. doi: 10.1039/b922160c
[34] HILL D J, MIO M J, PRINCE R B, et al. A field guide to foldamers [J]. Chemical Reviews,2001,101(12):3893-4011. doi: 10.1021/cr990120t
[35] XU Y Y, YANG G, XIA H Y, et al. Enantioselective synthesis of helical polydiacetylene by application of linearly polarized light and magnetic field [J]. Nature Communications,2014,5:5050. doi: 10.1038/ncomms6050
[36] LIU M H, ZHANG L, WANG T Y. Supramolecular chirality in self-assembled systems [J]. Chemical Reviews,2015,115(15):7304-7397. doi: 10.1021/cr500671p
[37] WANG S, FENG X Y, ZHANG J, et al. Helical conformations of poly(3,5-disubstituted phenylacetylene)s tuned by pendant structure and solvent [J]. Macromolecules,2017,50(9):3489-3499. doi: 10.1021/acs.macromol.7b00615
[38] WANG L W, LI Y, WANG H R, et al. Nanofabrication of helical hybrid silica nanotubes using anionic gelators [J]. Materials Chemistry and Physics,2010,124(1):609-613. doi: 10.1016/j.matchemphys.2010.07.021
[39] DELBIANCO M, BHARATE P, VARELA-ARAMBURU S, et al. Carbohydrates in supramolecular chemistry [J]. Chemical Reviews,2016,116(4):1693-1752. doi: 10.1021/acs.chemrev.5b00516
[40] SUGIKAWA K, KANEKO K, SADA K, et al. A molecular template designed by the modification of a helix-forming β-1,3-glucan polysaccharide to fabricate one-dimensional nanostructures [J]. Langmuir,2010,26(24):19100-19105. doi: 10.1021/la101335a
[41] HARAGUCHI S, HASEGAWA T, NUMATA M, et al. Oligosilane-nanofibers can be prepared through fabrication of permethyldecasilane within a helical superstructure of schizophyllan [J]. Organic Letters,2005,7(25):5605-5608. doi: 10.1021/ol052170s
[42] NUMATA M, HASEGAWA T, FUJISAWA T, et al. β-1,3-glucan (Schizophyllan) can act as a one-dimensional host for creation of novel poly(aniline) nanofiber structures [J]. Organic Letters,2004,6(24):4447-4450. doi: 10.1021/ol0483448
[43] LI C, NUMATA M, BAE A H, et al. Self-assembly of supramolecular chiral insulated molecular wire [J]. Journal of the American Chemical Society,2005,127(13):4548-4549. doi: 10.1021/ja050168q
[44] HARAGUCHI S, NUMATA M, LI C, et al. Circularly polarized luminescence from supramolecular chiral complexes of achiral conjugated polymers and a neutral polysaccharide [J]. Chemistry Letters,2009,38(3):254-255. doi: 10.1246/cl.2009.254
[45] IKEDA M, HASEGAWA T, NUMATA M, et al. Instantaneous inclusion of a polynucleotide and hydrophobic guest molecules into a helical core of cationic β-1,3-glucan polysaccharide [J]. Journal of the American Chemical Society,2007,129(13):3979-3988. doi: 10.1021/ja0684343
[46] SHIRAKI T, DAWN A, TSUCHIYA Y, et al. Thermo- and solvent-responsive polymer complex created from supramolecular complexation between a helix-forming polysaccharide and a cationic polythiophene [J]. Journal of the American Chemical Society,2010,132(39):13928-13935. doi: 10.1021/ja1067349
[47] SHIRAKI T, TSUCHIYA Y, NOGUCHI T, et al. Creation of circularly polarized luminescence from an achiral polyfluorene derivative through complexation with helix-forming polysaccharides: Importance of the meta-linkage chain for helix formation [J]. Chemistry: An Asian Journal,2014,9(1):218-222. doi: 10.1002/asia.201301216
[48] GUO S B, SUZUKI N, FUJIKI M. Oligo- and polyfluorenes meet cellulose alkyl esters: Retention, inversion, and racemization of circularly polarized luminescence (CPL) and circular dichroism (CD) via intermolecular C―H/O=C interactions [J]. Macromolecules,2017,50(5):1778-1789. doi: 10.1021/acs.macromol.6b02762
[49] FUKUHARA G, NAKAMURA T, YANG C, et al. Diastereodifferentiating photocyclodimerization of 2-anthracenecarboxylate tethered to cellulose scaffold [J]. Journal of Organic Chemistry,2010,75(12):4307-4310. doi: 10.1021/jo100596n
[50] FUKUHARA G, NAKAMURA T, YANG C, et al. Dual chiral, dual supramolecular diastereodifferentiating photocyclodimerization of 2-anthracenecarboxylate tethered to amylose scaffold [J]. Organic Letters,2010,12(15):3510-3513. doi: 10.1021/ol101362s
[51] YANG C, KE C F, LIANG W T, et al. Dual supramolecular photochirogenesis: Ultimate stereocontrol of photocyclodimerization by a chiral scaffold and confining host [J]. Journal of the American Chemical Society,2011,133(35):13786-13789. doi: 10.1021/ja202020x
[52] FUKUHARA G, NAKAMURA T, KAWANAMI Y, et al. Diastereodifferentiating photocyclodimerization of 2-anthracenecarboxylates tethered to a cyclic tetrasaccharide scaffold: Critical control of photoreactivity and stereoselectivity [J]. Journal of Organic Chemistry,2013,78(21):10996-11006. doi: 10.1021/jo401977f
[53] FUKUHARA G, NAKAMURA T, KAWANAMI Y, et al. Strictly diastereocontrolled photocyclodimerization of 2-anthracenecarboxylates tethered to cyclic tetrasaccharides [J]. Chemical Communications,2012,48(73):9156-9158. doi: 10.1039/c2cc34880b
[54] FUKUHARA G, IIDA K, KAWANAMI Y, et al. Excited-state dynamics achieved ultimate stereocontrol of photocyclodimerization of anthracenecarboxylates on a glucose scaffold [J]. Journal of the American Chemical Society,2015,137(47):15007-15014. doi: 10.1021/jacs.5b09775
[55] PURRELLO R, BELLACCHIO E, GURRIERI S, et al. pH modulation of porphyrins self-assembly onto polylysine [J]. Journal of Physical Chemistry B,1998,102(44):8852-8857. doi: 10.1021/jp9828686
[56] IKEDA S, NEZU T, EBERT G. Induced CD and interaction of some porphyrin derivatives with alpha-helical polypeptides in aqueous solutions [J]. Biopolymers,1991,31(11):1257-1263. doi: 10.1002/(ISSN)1097-0282
[57] NEZU T, IKEDA S. Induction of circular dichroism on the soret bands of a symmetric water-soluble porphyrin by poly(L-lysine) in three conformations [J]. Bulletin of the Chemical Society of Japan,1993,66(1):25-31. doi: 10.1246/bcsj.66.25
[58] NEZU T, IKEDA S. Induction of circular-dichroism of symmetrical porphyrins bound to random coil polypeptides in aqueous solutions [J]. International Journal of Biological Macromolecules,1993,15(2):101-103. doi: 10.1016/0141-8130(93)90005-7
[59] KOTI A S R, PERIASAMY N. Self-assembly of template-directed J-aggregates of porphyrin [J]. Chemistry of Materials,2003,15(2):369-371. doi: 10.1021/cm025664h
[60] FUKUSHIMA Y. Interaction of porphyrin derivatives with a beta-sheet structure of a zwitterionic polypeptide in aqueous solution [J]. Polymer Bulletin,2001,45(6):479-485. doi: 10.1007/s002890170101
[61] FUKUSHIMA Y. Salt effect on the interaction of 22,24-diprotonated 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin with a beta-sheet structure of a zwitterionic polypeptide [J]. Bulletin of the Chemical Society of Japan,1996,69(6):1719-1726. doi: 10.1246/bcsj.69.1719
[62] ZHANG L, LIU M H. Supramolecular chirality and chiral inversion of tetraphenylsulfonato porphyrin assemblies on optically active polylysine [J]. Journal of Physical Chemistry B,2009,113(42):14015-14020. doi: 10.1021/jp902870f
[63] IHARA H, SHIBATA M, HIRAYAMA C. Molecular recognition using cyanine-α-helical poly(L-Lysine) complexes in methanol [J]. Chemistry Letters,1992,21(9):1731-1734. doi: 10.1246/cl.1992.1731
[64] LE GAC S, SCHWARTZ E, KOEPF M, et al. Cysteine-containing polyisocyanides as versatile nanoplatforms for chromophoric and bioscaffolding [J]. Chemistry: A European Journal,2010,16(21):6176-6186. doi: 10.1002/chem.v16:21
[65] WINFREE E, LIU F R, WENZLER L A, et al. Design and self-assembly of two-dimensional DNA crystals [J]. Nature,1998,394(6693):539-544. doi: 10.1038/28998
[66] LIU F R, SHA R J, SEEMAN N C. Modifying the surface features of two-dimensional DNA crystals [J]. Journal of the American Chemical Society,1999,121(5):917-922. doi: 10.1021/ja982824a
[67] YAN H, PARK S H, FINKELSTEIN G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires [J]. Science,2003,301(5641):1882-1884. doi: 10.1126/science.1089389
[68] MAYER-ENTHART E, WAGENKNECHT H A. Structure-sensitive and self-assembled helical pyrene array based on DNA architecture [J]. Angewandte Chemie: International Edition,2006,45(20):3372-3375.
[69] ZAHN A, LEUMANN C J. Recognition properties of donor- and acceptor-modified biphenyl-DNA [J]. Chemistry: A European Journal,2008,14(4):1087-1094. doi: 10.1002/(ISSN)1521-3765
[70] KASHIDA H, ASANUMA H, KOMIYAMA M. Alternating hetero H aggregation of different dyes by interstrand stacking from two DNA-dye conjugates [J]. Angewandte Chemie: International Edition,2004,43(47):6522-6525. doi: 10.1002/(ISSN)1521-3773
[71] ASANUMA H, TAKARADA T, YOSHIDA T, et al. Enantioselective incorporation of azobenzenes into oligodeoxyribonucleotide for effective photoregulation of duplex formation [J]. Angewandte Chemie: International Edition,2001,40(14):2671-2673. doi: 10.1002/(ISSN)1521-3773
[72] GAROFF R A, LITZINGER E A, CONNOR R E, et al. Helical aggregation of cyanine dyes on DNA templates: Effect of dye structure on formation of homo- and heteroaggregates [J]. Langmuir,2002,18(16):6330-6337. doi: 10.1021/la025742f
[73] WANG M M, SILVA G L, ARMITAGE B A. DNA-templated formation of a helical cyanine dye J-aggregate [J]. Journal of the American Chemical Society,2000,122(41):9977-9986. doi: 10.1021/ja002184n
[74] NGUYEN T, BREWER A, STULZ E. Duplex stabilization and energy transfer in zipper porphyrin-DNA [J]. Angewandte Chemie: International Edition,2009,48(11):1974-1977. doi: 10.1002/anie.v48:11
[75] GOLLA M, ALBERT S K, ATCHIMNAIDU S, et al. DNA-decorated, helically twisted nanoribbon: A scaffold for the fabrication of one-dimensional, chiral, plasmonic nanostructures [J]. Angewandte Chemie: International Edition,2019,58(1):1-6. doi: 10.1002/anie.201813481
[76] ZHENG Y, LONG H, SCHATZ G C, et al. A cooperative beads-on-a-string approach to exceptionally stable DNA triplexes [J]. Chemical Communications,2006(36):3830-3832.
[77] BAUMSTARK D, WAGENKNECHT H A. Fluorescent hydrophobic zippers inside duplex DNA: Interstrand stacking of perylene-3,4:9,10-tetracarboxylic acid bisimides as artificial DNA base dyes [J]. Chemistry: A European Journal,2008,14(22):6640-6645. doi: 10.1002/chem.v14:22
[78] BARBARIC J, WAGENKNECHT H A. DNA as a supramolecular scaffold for the helical arrangement of a stack of 1-ethynylpyrene chromophores [J]. Organic and Biomolecular Chemistry,2006,4(11):2088-2090.
[79] ALIVISATOS A P, JOHNSSON K P, PENG X G, et al. Organization of 'nanocrystal molecules' using DNA [J]. Nature,1996,382(6592):609-611. doi: 10.1038/382609a0
[80] LI H Y, PARK S H, REIF J H, et al. DNA-templated self-assembly of protein and nanoparticle linear arrays [J]. Journal of the American Chemical Society,2004,126(2):418-419. doi: 10.1021/ja0383367
[81] XIAO S J, LIU F R, ROSEN A E, et al. Selfassembly of metallic nanoparticle arrays by DNA scaffolding [J]. Journal of Nanoparticle Research,2002,4(4):313-317. doi: 10.1023/A:1021145208328
[82] LE J D, PINTO Y, SEEMAN N C, et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface [J]. Nano Letters,2004,4(12):2343-2347. doi: 10.1021/nl048635+
[83] LAN X, LIU T, WANG Z, et al. DNA-guided plasmonic helix with switchable chirality [J]. Journal of the American Chemical Society,2018,140(37):11763-11770. doi: 10.1021/jacs.8b06526
[84] HANABUSA K, YAMADA M, KIMURA M, et al. Prominent gelation and chiral aggregation of alkylamides derived from trans-1,2-diaminocyclohexane [J]. Angewandte Chemie: International Edition,1996,35(17):1949-1951. doi: 10.1002/(ISSN)1521-3773
[85] JUNG J H, ONO Y, HANABUSA K, et al. Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives [J]. Journal of the American Chemical Society,2000,122(20):5008-5009. doi: 10.1021/ja000449s
[86] ONO Y, NAKASHIMA K, SANO M, et al. Organic gels are useful as a template for the preparation of hollow fiber silica [J]. Chemical Communications,1998,14(1):1477-1478.
[87] SUGIYASU K, TAMARU S, TAKEUCHI M, et al. Double helical silica fibrils by sol-gel transcription of chiral aggregates of gemini surfactants [J]. Chemical Communications,2002(11):1212-1213.
[88] van BOMMEL K J C, FRIGGERI A, SHINKAI S. Organic templates for the generation of inorganic materials [J]. Angewandte Chemie: International Edition,2003,42(9):980-999. doi: 10.1002/anie.200390284
[89] HUO H J, LI Y, YUAN Y, et al. Chiral carbonaceous nanotubes containing twisted carbonaceous nanoribbons, prepared by the carbonization of chiral organic self-assemblies [J]. Chemistry: An Asian Journal,2014,9(10):2866-2871. doi: 10.1002/asia.201402569
[90] LIU D, LI B Z, GUO Y M, et al. Inner surface chirality of single-handed twisted carbonaceous tubular nanoribbons [J]. Chirality,2015,27(11):809-815. doi: 10.1002/chir.v27.11
[91] YANG Y G, SUZUKI M, OWA S, et al. Control of helical silica nanostructures using a chiral surfactant [J]. Journal of Materials Chemistry,2006,16(17):1644-1650. doi: 10.1039/b517121k
[92] YANG D, ZHAO Y, LV K, et al. A strategy for tuning achiral main-chain polymers into helical assemblies and chiral memory systems [J]. Soft Matter,2016,12(4):1170-1175. doi: 10.1039/C5SM02547H
[93] LV K, QIN L, WANG X F, et al. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding [J]. Physical Chemistry Chemical Physics,2013,15(46):20197-20202. doi: 10.1039/c3cp53620c
[94] LI Y G, WANG T Y, LIU M H. Gelating-induced supramolecular chirality of achiral porphyrins: Chiroptical switch between achiral molecules and chiral assemblies [J]. Soft Matter,2007,3(10):1312-1317. doi: 10.1039/b710165a
[95] DUAN P F, LI Y G, JIANG J, et al. Towards a universal organogelator: A general mixing approach to fabricate various organic compounds into organogels [J]. Science China: Chemistry,2011,54(7):1051-1063. doi: 10.1007/s11426-011-4295-x
[96] GOTO T, OKAZAKI Y, UEKI M, et al. Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates [J]. Angewandte Chemie: International Edition,2017,56(11):2989-2993. doi: 10.1002/anie.201612331
[97] SAGAWA T, TOBATA H, IHARA H. Exciton interactions in cyanine dye-hyaluronic acid (HA) complex: reversible and biphasic molecular switching of chromophores induced by random coil-to-double-helix phase transition of HA [J]. Chemical Communications,2004,18:2090-2091.
[98] INOUYE M, CHIBA J, NAKAZUMI H. Glucopyranoside recognition by polypyridine-macrocyclic receptors possessing a wide cavity with a flexible linkage [J]. Journal of Organic Chemistry,1999,64(22):8170-8176. doi: 10.1021/jo9911138
[99] INOUYE M, TAKAHASHI K, NAKAZUMI H. Remarkably strong, uncharged hydrogen-bonding interactions of polypyridine-macrocyclic receptors for deoxyribofuranosides [J]. Journal of the American Chemical Society,1999,121(2):341-345. doi: 10.1021/ja983539u
[100] INOUYE M, MIYAKE T, FURUSYO M, et al. Molecular recognition of β-ribofuranosides by synthetic polypyridine-macrocyclic receptors [J]. Journal of the American Chemical Society,1995,117(50):12416-12425. doi: 10.1021/ja00155a006
[101] INOUYE M, WAKI M, ABE H. Saccharide-dependent induction of chiral helicity in achiral synthetic hydrogen-bonding oligomers [J]. Journal of the American Chemical Society,2004,126(7):2022-2027. doi: 10.1021/ja039371g
[102] RAHIM N A A, FUJIKI M. Aggregation-induced scaffolding: Photoscissable helical polysilane generates circularly polarized luminescent polyfluorene [J]. Polymer Chemistry,2016,7(28):4618-4629. doi: 10.1039/C6PY00595K
[103] FUJIKI M, YOSHIMOTO S. Time-evolved, far-red, circularly polarised luminescent polymer aggregates endowed with sacrificial helical Si―Si bond polymers [J]. Materials Chemistry Frontiers,2017,1(9):1773-1785. doi: 10.1039/C7QM00096K
[104] DUONG S T, FUJIKI M. The origin of bisignate circularly polarized luminescence (CPL) spectra from chiral polymer aggregates and molecular camphor: Anti-Kasha's rule revealed by CPL excitation (CPLE) spectra [J]. Polymer Chemistry,2017,8(32):4673-4679. doi: 10.1039/C7PY00958E
[105] CHEN H L, YIN L, LIU M, et al. Aggregation-induced chiroptical generation and photoinduced switching of achiral azobenzene-alt-fluorene copolymer endowed with left- and right-handed helical polysilanes [J]. RSC Advances,2019(9):4849-4856. doi: 10.1039/C8RA09345H