[1] LOWE A B, MCCORMICK C L. Synthesis and solution properties of zwitterionic polymers [J]. Chemical Reviews,2002,102(11):4177-4189. doi: 10.1021/cr020371t
[2] LASCHEWSKY A, ROSENHAHN A. Molecular design of zwitterionic polymer interfaces: Searching for the difference [J]. Langmuir,2019,35(5):1056-1071. doi: 10.1021/acs.langmuir.8b01789
[3] ALFREY T, MORAWETZ H, FITZGERALD E B, et al. Synthetic electrical analog of proteins [J]. Journal of the American Chemical Society,1950,72(4):1864.
[4] CHEN S, LI L, ZHAO C, et al. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials [J]. Polymer,2010,51(23):5283-5293. doi: 10.1016/j.polymer.2010.08.022
[5] LENG C, SUN S, ZHANG K, et al. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ [J]. Acta Biomaterialia,2016,40:6-15. doi: 10.1016/j.actbio.2016.02.030
[6] MCCORMICK C L, JOHNSON C B. Water-soluble polymers: 28. Ampholytic copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl) dimethylammonium chloride: Synthesis and characterization [J]. Macromolecules,1988,21(3):686-693. doi: 10.1021/ma00181a025
[7] MCCORMICK C L, JOHNSON C B. Water-soluble copolymers: 29. Ampholytic copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl) dimethylammonium chloride: Solution properties [J]. Macromolecules,1988,21(3):694-699. doi: 10.1021/ma00181a026
[8] SHAO Q, JIANG S. Molecular understanding and design of zwitterionic materials [J]. Advanced Materials,2015,27(1):15-26. doi: 10.1002/adma.v27.1
[9] EHRMANN M, MATHIS A, MEURER B, et al. Statistical n-butyl acrylate-(sulfopropyl) ammonium betaine copolymers: 2. Structural studies [J]. Macromolecules,1992,25(8):2253-2261. doi: 10.1021/ma00034a029
[10] CHEN Y, HAN H, TONG H, et al. Zwitterionic phosphorylcholine-TPE conjugate for pH-responsive drug delivery and AIE active imaging [J]. ACS Applied Materials and Interfaces,2016,8(33):21185-21192.
[11] ZHANG C, YUAN J, LU J, et al. From neutral to zwitterionic poly(alpha-amino acid) nonfouling surfaces: Effects of helical conformation and anchoring orientation [J]. Biomaterials,2018,178:728-737. doi: 10.1016/j.biomaterials.2018.01.052
[12] LAU K H, SILEIKA T S, PARK S H, et al. Molecular design of antifouling polymer brushes using sequence-specific peptoids [J]. Advanced Materials Interfaces,2015,2(1):1400225. doi: 10.1002/admi.201400225
[13] PELEGRI-O'DAY E M, PALUCK S J, MAYNARD H D. Substituted polyesters by thiol-ene modification: Rapid diversification for therapeutic protein stabilization [J]. Journal of the American Chemical Society,2017,139(3):1145-1154. doi: 10.1021/jacs.6b10776
[14] WANG J, SUN H, LI J, et al. Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption [J]. Carbohydrate Polymers,2015,117:384-391. doi: 10.1016/j.carbpol.2014.09.077
[15] TAUHARDT L, PRETZEL D, KEMPE K, et al. Zwitterionic poly(2-oxazoline)s as promising candidates for blood contacting applications [J]. Polymer Chemistry,2014,5(19):5751-5764. doi: 10.1039/C4PY00434E
[16] WIELEMA T A, ENGBERTS J B F N. Zwitterionic polymers—I. Synthesis of a novel series of poly(vinylsulphobetaines): Effect of structure of polymer on solubility in water [J]. European Polymer Journal,1987,23(12):947-950. doi: 10.1016/0014-3057(87)90038-3
[17] MIURA M, AKUTSU F, KUNIMOTO F, et al. Grafting via macrozwitterions: Graft copolymerization of acrylic acid from diphenyl-4-vinylphenylphosphine sites on a polymer backbone [J]. Die Makromolekulare Chemie: Rapid Communications,1984,5(2):109-113. doi: 10.1002/marc.1984.030050210
[18] MENG J, CAO Z, NI L, et al. A novel salt-responsive TFC RO membrane having superior antifouling and easy-cleaning properties [J]. Journal of Membrane Science,2014,461:123-129. doi: 10.1016/j.memsci.2014.03.017
[19] SALAMONE J C, VOLKSEN W, ISRAEL S C, et al. Preparation of inner salt polymers from vinylimidazolium sulphobetaines [J]. Polymer,1977,18(10):1058-1062. doi: 10.1016/0032-3861(77)90013-1
[20] VIKLUND C, IRGUM K. Synthesis of porous zwitterionic sulfobetaine monoliths and characterization of their interaction with proteins [J]. Macromolecules,2000,33(7):2539-2544. doi: 10.1021/ma991965+
[21] KATHMANN E E, WHITE L A, MCCORMICK C L. Water soluble polymers: 70. Effects of methylene versus propylene spacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporating carboxybetaine monomers [J]. Polymer,1997,38(4):879-886. doi: 10.1016/S0032-3861(96)00587-3
[22] ISHIHARA K, FUKUMOTO K, IWASAKI Y, et al. Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility: Part 1. Surface characterization [J]. Biomaterials,1999,20(17):1545-1551. doi: 10.1016/S0142-9612(99)00052-6
[23] ZHENG L, SUNDARAM H S, WEI Z, et al. Applications of zwitterionic polymers [J]. Reactive and Functional Polymers,2017,118:51-61. doi: 10.1016/j.reactfunctpolym.2017.07.006
[24] LIU Q, LI W, WANG H, et al. Amino acid-based zwitterionic polymer surfaces highly resist long-term bacterial adhesion [J]. Langmuir,2016,32(31):7866-7874. doi: 10.1021/acs.langmuir.6b01329
[25] LENG C, HAN X, SHAO Q, et al. In situ probing of the surface hydration of zwitterionic polymer brushes: Structural and environmental effects [J]. The Journal of Physical Chemistry C,2014,118(29):15840-15845. doi: 10.1021/jp504293r
[26] VAISOCHEROVA H, YANG W, ZHANG Z, et al. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma [J]. Analytical Chemistry,2008,80(20):7894-7901. doi: 10.1021/ac8015888
[27] BRAULT N D, SUNDARAM H S, HUANG C J, et al. Two-layer architecture using atom transfer radical polymerization for enhanced sensing and detection in complex media [J]. Biomacromolecules,2012,13(12):4049-4056. doi: 10.1021/bm301335r
[28] IWASAKI Y, ISHIHARA K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces [J]. Science and Technology of Advanced Materials,2012,13(6):064101. doi: 10.1088/1468-6996/13/6/064101
[29] UEDA T, OSHIDA H, KURITA K, et al. Perparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility [J]. Polymer Journal,1992,24(11):1259-1269. doi: 10.1295/polymj.24.1259
[30] GODA T, ISHIHARA K, MIYAHARA Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science [J]. Journal of Applied Polymer Science,2015,132(16):41766.
[31] YU X, LIU Z, JANZEN J, et al. Polyvalent choline phosphate as a universal biomembrane adhesive [J]. Nature Materials,2012,11(5):468-476. doi: 10.1038/nmat3272
[32] HU G, EMRICK T. Functional choline phosphate polymers [J]. Journal of the American Chemical Society,2016,138(6):1828-1831. doi: 10.1021/jacs.5b13156
[33] ZHAO Y, ZHANG P, SUN J, et al. Electrolyte-responsive polyethersulfone membranes with zwitterionic polyethersulfone-based copolymers as additive [J]. Journal of Membrane Science,2016,510:306-313. doi: 10.1016/j.memsci.2016.03.006
[34] COSTA T, de AZEVEDO D, STEWART B, et al. Interactions of a zwitterionic thiophene-based conjugated polymer with surfactants [J]. Polymer Chemistry,2015,6(46):8036-8046. doi: 10.1039/C5PY01210D
[35] FRAGA-DUBREUIL J, BOURAHLA K, RAHMOUNI M, et al. Catalysed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media [J]. Catalysis Communications,2002,3(5):185-190. doi: 10.1016/S1566-7367(02)00087-0
[36] BĂRBOIU V, STREBA E, LUCA C, et al. Reactions on polymers with amine groups: I. Reactions of vinylpridine polymers and of their model compounds with unsaturated carboxylic acids [J]. Journal of Polymer Science Part A: Polymer Chemistry,1995,33(3):389-398. doi: 10.1002/pola.1995.080330306
[37] WANG J, WANG Z, WANG J X, et al. Improving the water flux and bio-fouling resistance of reverse osmosis (RO) membrane through surface modification by zwitterionic polymer [J]. Journal of Membrane Science,2015,493:188-199. doi: 10.1016/j.memsci.2015.06.036
[38] HAHN M, GÖRNITZ E, DAUTZENBERG H. Synthesis and properties of ionically modified polymers with LCST behavior [J]. Macromolecules,1998,31(17):5616-5623. doi: 10.1021/ma9800010
[39] NAKAYA T. Phospholipid polymers [J]. Progress in Polymer Science,1999,24(1):143-181. doi: 10.1016/S0079-6700(98)00015-X
[40] ZHANG S, ZOU J, ZHANG F, et al. Rapid and versatile construction of diverse and functional nanostructures derived from a polyphosphoester-based biomimetic block copolymer system [J]. Journal of the American Chemical Society,2012,134(44):18467-18474. doi: 10.1021/ja309037m
[41] ALI S. Synthesis and solution properties of a quaternary ammonium polyelectrolyte and its corresponding polyampholyte [J]. Polymer,2001,42(19):7961-7970. doi: 10.1016/S0032-3861(01)00289-0
[42] KUDAIBERGENOV S, JAEGER W, LASCHEWSKY A. Supramolecular Polymers Polymeric Betains Oligomers [M]. Berlin, Heidelberg: Springer, 2006: 157-224.
[43] SKINNER M, JOHNSTON B M, LIU Y, et al. Synthesis of zwitterionic pluronic analogs [J]. Biomacromolecules,2018,19(8):3377-3389. doi: 10.1021/acs.biomac.8b00676
[44] ZHOU J, YAO H, MA J. Recent advances in RAFT-mediated surfactant-free emulsion polymerization [J]. Polymer Chemistry,2018,9(19):2532-2561. doi: 10.1039/C8PY00065D
[45] RATNER B D, BRYANT S J. Biomaterials: Where we have been and where we are going [J]. Annual Review of Biomedical Engineering,2004,6:41-75. doi: 10.1146/annurev.bioeng.6.040803.140027
[46] VENKATRAMAN S, BOEY F, LAO L L. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired [J]. Progress in Polymer Science,2008,33(9):853-874. doi: 10.1016/j.progpolymsci.2008.07.001
[47] FRANZ S, RAMMELT S, SCHARNWEBER D, et al. Immune responses to implants: A review of the implications for the design of immunomodulatory biomaterials [J]. Biomaterials,2011,32(28):6692-6709. doi: 10.1016/j.biomaterials.2011.05.078
[48] LI L, CHEN S, JIANG S. Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption [J]. Journal of Biomaterials Science, Polymer Edition,2007,18(11):1415-1427. doi: 10.1163/156856207782246795
[49] XIE Y, LIU M, ZHOU J. Molecular dynamics simulations of peptide adsorption on self-assembled monolayers [J]. Applied Surface Science,2012,258(20):8153-8159. doi: 10.1016/j.apsusc.2012.05.013
[50] HONG D, HUNG H C, WU K, et al. Achieving ultralow fouling under ambient conditions via surface-initiated ARGET ATRP of carboxybetaine [J]. ACS Applied Materials and Interfaces,2017,9(11):9255-9259.
[51] ZHU Y, SUNDARAM H S, LIU S, et al. A robust graft-to strategy to form multifunctional and stealth zwitterionic polymer-coated mesoporous silica nanoparticles [J]. Biomacromolecules,2014,15(5):1845-1851. doi: 10.1021/bm500209a
[52] SUNDARAM H S, HAN X, NOWINSKI A K, et al. One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces [J]. ACS Applied Materials and Interfaces,2014,6(9):6664-6671.
[53] SUN F, WU K, HUNG H C, et al. Paper sensor coated with a poly(carboxybetaine)-multiple DOPA conjugate via dip-coating for biosensing in complex media [J]. Analytical Chemistry,2017,89(20):10999-11004. doi: 10.1021/acs.analchem.7b02876
[54] CHEN S, XIE Y, XIAO T, et al. Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface [J]. Chemical Engineering Journal,2018,337:122-132. doi: 10.1016/j.cej.2017.12.057
[55] YAO L, HE C, CHEN S, et al. Codeposition of polydopamine and zwitterionic polymer on membrane surface with enhanced stability and antibiofouling property [J]. Langmuir,2019,35(5):1430-1439. doi: 10.1021/acs.langmuir.8b01621
[56] KWON H J, LEE Y, PHUONG L T, et al. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property [J]. Acta Biomaterialia,2017,61:169-179. doi: 10.1016/j.actbio.2017.08.007
[57] ZHAO W, YE Q, HU H, et al. Grafting zwitterionic polymer brushes via electrochemical surface-initiated atomic-transfer radical polymerization for anti-fouling applications [J]. Journal of Materials Chemistry B,2014,2(33):5352-5357. doi: 10.1039/C4TB00816B
[58] ZHANG C, LU J, HOU Y, et al. Investigation on the linker length of synthetic zwitterionic polypeptides for improved nonfouling surfaces [J]. ACS Applied Materials and Interfaces,2018,10(20):17463-17470.
[59] YANG J, CHEN H, XIAO S, et al. Salt-responsive zwitterionic polymer brushes with tunable friction and antifouling properties [J]. Langmuir,2015,31(33):9125-9133. doi: 10.1021/acs.langmuir.5b02119
[60] WANG Z, van ANDEL E, PUJARI S P, et al. Water-repairable zwitterionic polymer coatings for anti-biofouling surfaces [J]. Journal of Materials Chemistry B,2017,5(33):6728-6733. doi: 10.1039/C7TB01178D
[61] TANG Z, MA C, WU H, et al. Antiadhesive zwitterionic poly-(sulphobetaine methacrylate) brush coating functionalized with triclosan for high-efficiency antibacterial performance [J]. Progress in Organic Coatings,2016,97:277-287. doi: 10.1016/j.porgcoat.2016.04.038
[62] CHI C, SUN B, ZHOU N, et al. Anticoagulant polyurethane substrates modified with poly(2-methacryloyloxyethyl phosphorylcholine) via SI-RATRP [J]. Colloids and Surfaces B: Biointerfaces,2018,163:301-308. doi: 10.1016/j.colsurfb.2018.01.005
[63] LIU S, JIANG S. Zwitterionic polymer-protein conjugates reduce polymer-specific antibody response [J]. Nano Today,2016,11(3):285-291. doi: 10.1016/j.nantod.2016.05.006
[64] 张冲, 吕华. 蛋白质-聚氨基酸偶联物的高效合成与应用 [J]. 高分子学报,2018(1):21-31.
[65] SCHELLEKENS H, HENNINK W E, BRINKS V. The immunogenicity of polyethylene glycol: Facts and fiction [J]. Pharmaceutical Research,2013,30(7):1729-1734. doi: 10.1007/s11095-013-1067-7
[66] ZHANG P, SUN F, LIU S, et al. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation [J]. Journal of Controlled Release,2016,244:184-193. doi: 10.1016/j.jconrel.2016.06.040
[67] RAJAN R, MATSUMURA K. A zwitterionic polymer as a novel inhibitor of protein aggregation [J]. Journal of Materials Chemistry B,2015,3(28):5683-5689. doi: 10.1039/C5TB01021G
[68] RAJAN R, MATSUMURA K. Inhibition of protein aggregation by zwitterionic polymer-based core-shell nanogels [J]. Scientific Reports,2017,7:45777. doi: 10.1038/srep45777
[69] BHATTACHARJEE S, LIU W, WANG W H, et al. Site-specific zwitterionic polymer conjugates of a protein have long plasma circulation [J]. ChemBioChem,2015,16(17):2451-2455. doi: 10.1002/cbic.201500439
[70] XIE J, LU Y, WANG W, et al. Simple protein modification using zwitterionic polymer to mitigate the bioactivity loss of conjugated insulin [J]. Advanced Healthcare Materials,2017,6(11):1601428. doi: 10.1002/adhm.v6.11
[71] LIANG S, LIU Y, JIN X, et al. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins [J]. Nano Research,2016,9(4):1022-1031. doi: 10.1007/s12274-016-0991-3
[72] ZHANG L, LIU Y, LIU G, et al. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer [J]. Nano Research,2016,9(8):2424-2432. doi: 10.1007/s12274-016-1128-4
[73] HU J, WANG G, ZHAO W, et al. In situ growth of a C-terminal interferon-alpha conjugate of a phospholipid polymer that outperforms PEGASYS in cancer therapy [J]. Journal of Controlled Release,2016,237:71-77. doi: 10.1016/j.jconrel.2016.07.007
[74] KEEFE A J, JIANG S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity [J]. Nature Chemistry,2011,4(1):59-63.
[75] ZHANG P, SUN F, TSAO C, et al. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity [J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(39):12046-12051. doi: 10.1073/pnas.1512465112
[76] ZHANG P, JAIN P, TSAO C, et al. Polypeptides with high zwitterion density for safe and effective therapeutics [J]. Angewandte Chemie International Edition,2018,57(26):7743-7747. doi: 10.1002/anie.v57.26
[77] HAN Y, YUAN Z, ZHANG P, et al. Zwitterlation mitigates protein bioactivity loss in vitro over PEGylation [J]. Chemical Science,2018,9(45):8561-8566. doi: 10.1039/C8SC01777H
[78] ZHENG G, LIU S, ZHA J, et al. Protecting enzymatic activity via zwitterionic nanocapsulation for the removal of phenol compound from wastewater [J]. Langmuir,2019,35(5):1858-1863. doi: 10.1021/acs.langmuir.8b02001
[79] JIN Q, CHEN Y, WANG Y, et al. Zwitterionic drug nanocarriers: A biomimetic strategy for drug delivery [J]. Colloids and Surfaces B: Biointerfaces,2014,124:80-86. doi: 10.1016/j.colsurfb.2014.07.013
[80] ZHANG L, CAO Z, BAI T, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction [J]. Nature Biotechnology,2013,31(6):553-556. doi: 10.1038/nbt.2580
[81] YANG W, LIU S, BAI T, et al. Poly(carboxybetaine) nanomaterials enable long circulation and prevent polymer-specific antibody production [J]. Nano Today,2014,9(1):10-16. doi: 10.1016/j.nantod.2014.02.004
[82] CAI M, LENG M, LU A, et al. Synthesis of amphiphilic copolymers containing zwitterionic sulfobetaine as pH and redox responsive drug carriers [J]. Colloids and Surfaces B: Biointerfaces,2015,126:1-9. doi: 10.1016/j.colsurfb.2014.12.005
[83] WANG Y, LI L, LI J, et al. Stable and pH-responsive polyamidoamine based unimolecular micelles capped with a zwitterionic polymer shell for anticancer drug delivery [J]. RSC Advances,2016,6(21):17728-17739. doi: 10.1039/C5RA25505H
[84] LIU N, HAN J, ZHANG X, et al. pH-responsive zwitterionic polypeptide as a platform for anti-tumor drug delivery [J]. Colloids and Surfaces B: Biointerfaces,2016,145:401-409. doi: 10.1016/j.colsurfb.2016.05.027
[85] SUN H, CHANG M Y Z, CHENG W I, et al. Biodegradable zwitterionic sulfobetaine polymer and its conjugate with paclitaxel for sustained drug delivery [J]. Acta Biomaterialia,2017,64:290-300. doi: 10.1016/j.actbio.2017.10.016
[86] MA G, LIN W, YUAN Z, et al. Development of ionic strength/pH/enzyme triple-responsive zwitterionic hydrogel of the mixed L-glutamic acid and L-lysine polypeptide for site-specific drug delivery [J]. Journal of Materials Chemistry B,2017,5(5):935-943. doi: 10.1039/C6TB02407F
[87] MEN Y, PENG S, YANG P, et al. Biodegradable zwitterionic nanogels with long circulation for antitumor drug delivery [J]. ACS Applied Materials and Interfaces,2018,10(28):23509-23521.
[88] CAO Z, YU Q, XUE H, et al. Nanoparticles for drug delivery prepared from amphiphilic PLGA zwitterionic block copolymers with sharp contrast in polarity between two blocks [J]. Angewandte Chemie International Edition,2010,49(22):3771-3776. doi: 10.1002/anie.v49:22
[89] LI W, LIU Q, ZHANG P, et al. Zwitterionic nanogels crosslinked by fluorescent carbon dots for targeted drug delivery and simultaneous bioimaging [J]. Acta Biomaterialia,2016,40:254-262. doi: 10.1016/j.actbio.2016.04.006
[90] WEN Y, ZHANG Z, LI J. Highly efficient multifunctional supramolecular gene carrier system self-assembled from redox-sensitive and zwitterionic polymer blocks [J]. Advanced Functional Materials,2014,24(25):3874-3884. doi: 10.1002/adfm.v24.25
[91] LI Y, LIU R, SHI Y, et al. Zwitterionic poly(carboxybetaine)-based cationic liposomes for effective delivery of small interfering RNA therapeutics without accelerated blood clearance phenomenon [J]. Theranostics,2015,5(6):583-596. doi: 10.7150/thno.11234
[92] LI Y, XU B, BAI T, et al. Co-delivery of doxorubicin and tumor-suppressing p53 gene using a POSS-based star-shaped polymer for cancer therapy [J]. Biomaterials,2015,55:12-23. doi: 10.1016/j.biomaterials.2015.03.034
[93] HE M, GAO K, ZHOU L, et al. Zwitterionic materials for antifouling membrane surface construction [J]. Acta Biomaterialia,2016,40:142-152. doi: 10.1016/j.actbio.2016.03.038
[94] MENG F, ZHANG M, DING K, et al. Cell membrane mimetic PVDF microfiltration membrane with enhanced antifouling and separation performance for oil/water mixtures [J]. Journal of Materials Chemistry A,2018,6(7):3231-3241. doi: 10.1039/C7TA10135J
[95] CAI T, LI X, WAN C, et al. Zwitterionic polymers grafted poly(ether sulfone) hollow fiber membranes and their antifouling behaviors for osmotic power generation [J]. Journal of Membrane Science,2016,497:142-152. doi: 10.1016/j.memsci.2015.09.037
[96] XIANG T, WANG R, ZHAO W F, et al. Covalent deposition of zwitterionic polymer and citric acid by click chemistry-enabled layer-by-layer assembly for improving the blood compatibility of polysulfone membrane [J]. Langmuir,2014,30(18):5115-5125. doi: 10.1021/la5001705
[97] FANG L, JEON S, KAKIHANA Y, et al. Improved antifouling properties of polyvinyl chloride blend membranes by novel phosphate based-zwitterionic polymer additive [J]. Journal of Membrane Science,2017,528:326-335. doi: 10.1016/j.memsci.2017.01.044
[98] LIEU L N, QUILITZSCH M, CHENG H, et al. Hollow fiber membrane lumen modified by polyzwitterionic grafting [J]. Journal of Membrane Science,2017,522:1-11. doi: 10.1016/j.memsci.2016.08.038
[99] TU K, SHEN P, LI J, et al. Preparation of enduringly antifouling PVDF membrane with compatible zwitterionic copolymer via thermally induced phase separation [J]. Journal of Applied Polymer Science,2015,132(7):41362.
[100] MATIN A, KHAN Z, ZAIDI S M J, et al. Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention [J]. Desalination,2011,281:1-16. doi: 10.1016/j.desal.2011.06.063
[101] HAMZAH S, ALI N A, MOHAMMAD A W, et al. Design of chitosan/PSf self-assembly membrane to mitigate fouling and enhance performance in trypsin separation [J]. Journal of Chemical Technology and Biotechnology,2012,87(8):1157-1166. doi: 10.1002/jctb.v87.8
[102] RONG G, ZHOU D, HAN X, et al. Preparation and characterization of novel zwitterionic poly(arylene ether sulfone) ultrafiltration membrane with good thermostability and excellent antifouling properties [J]. Applied Surface Science,2018,427:1065-1075. doi: 10.1016/j.apsusc.2017.08.156
[103] ZHOU R, REN P, YANG H, et al. Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition [J]. Journal of Membrane Science,2014,466:18-25. doi: 10.1016/j.memsci.2014.04.032
[104] LI Q, IMBROGNO J, BELFORT G, et al. Making polymeric membranes antifouling via “grafting from” polymerization of zwitterions [J]. Journal of Applied Polymer Science,2015,132(21):41781.
[105] NI L, MENG J, GEISE G M, et al. Water and salt transport properties of zwitterionic polymers film [J]. Journal of Membrane Science,2015,491:73-81. doi: 10.1016/j.memsci.2015.05.030
[106] ZHAO J, ZHAO X, JIANG Z, et al. Biomimetic and bioinspired membranes: Preparation and application [J]. Progress in Polymer Science,2014,39(9):1668-1720. doi: 10.1016/j.progpolymsci.2014.06.001
[107] ZHAO X, HE C. Efficient preparation of super antifouling PVDF ultrafiltration membrane with one step fabricated zwitterionic surface [J]. ACS Applied Materials and Interfaces,2015,7(32):17947-17953.
[108] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science,2007,318(5849):426-430. doi: 10.1126/science.1147241
[109] KIM G, YONG Y, KANG H J, et al. Zwitterionic polymer-coated immunobeads for blood-based cancer diagnostics [J]. Biomaterials,2014,35(1):294-303. doi: 10.1016/j.biomaterials.2013.09.101
[110] XIE X, DOLOFF J C, YESILYURT V, et al. Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer [J]. Nature Biomedical Engineering,2018,2:894-906. doi: 10.1038/s41551-018-0273-3
[111] CHOI S K, SON H A, KIM H T, et al. Nanofluid enhanced oil recovery using hydrophobically associative zwitterionic polymer-coated silica nanoparticles [J]. Energy and Fuels,2017,31(8):7777-7782.
[112] ZHANG P, FRITZ P A, SCHROEN K, et al. Zwitterionic polymer modified porous carbon for high-performance and antifouling capacitive desalination [J]. ACS Applied Materials and Interfaces,2018,10(39):33564-33573.
[113] XU S, YE Z, WU P. Biomimetic controlling of CaCO3 and BaCO3 superstructures by zwitterionic polymer [J]. ACS Sustainable Chemistry and Engineering,2015,3(8):1810-1818.
[114] WEI R, SONG W, YANG F, et al. Bidirectionally pH-responsive zwitterionic polymer hydrogels with switchable selective adsorption capacities for anionic and cationic dyes [J]. Industrial and Engineering Chemistry Research,2018,57(24):8209-8219.